AWS Machine Learning Blog

Category: Artificial Intelligence

Explain medical decisions in clinical settings using Amazon SageMaker Clarify

In this post, we show how to improve model explainability in clinical settings using Amazon SageMaker Clarify. Explainability of machine learning (ML) models used in the medical domain is becoming increasingly important because models need to be explained from a number of perspectives in order to gain adoption. These perspectives range from medical, technological, legal, and the most important perspective—the patient’s. Models developed on text in the medical domain have become accurate statistically, yet clinicians are ethically required to evaluate areas of weakness related to these predictions in order to provide the best care for individual patients. Explainability of these predictions is required in order for clinicians to make the correct choices on a patient-by-patient basis.

Build ML features at scale with Amazon SageMaker Feature Store using data from Amazon Redshift

Amazon Redshift is the most popular cloud data warehouse that is used by tens of thousands of customers to analyze exabytes of data every day. Many practitioners are extending these Redshift datasets at scale for machine learning (ML) using Amazon SageMaker, a fully managed ML service, with requirements to develop features offline in a code […]

Unlocking efficiency: Harnessing the power of Selective Execution in Amazon SageMaker Pipelines

MLOps is a key discipline that often oversees the path to productionizing machine learning (ML) models. It’s natural to focus on a single model that you want to train and deploy. However, in reality, you’ll likely work with dozens or even hundreds of models, and the process may involve multiple complex steps. Therefore, it’s important […]

Train self-supervised vision transformers on overhead imagery with Amazon SageMaker

In this post, we demonstrate how to train self-supervised vision transformers on overhead imagery using Amazon SageMaker. Travelers collaborated with the Amazon Machine Learning Solutions Lab (now known as the Generative AI Innovation Center) to develop this framework to support and enhance aerial imagery model use cases.

How Thomson Reuters developed Open Arena, an enterprise-grade large language model playground, in under 6 weeks

In this post, we discuss how Thomson Reuters Labs created Open Arena, Thomson Reuters’s enterprise-wide large language model (LLM) playground that was developed in collaboration with AWS. The original concept came out of an AI/ML Hackathon supported by Simone Zucchet (AWS Solutions Architect) and Tim Precious (AWS Account Manager) and was developed into production using AWS services in under 6 weeks with support from AWS. AWS-managed services such as AWS Lambda, Amazon DynamoDB, and Amazon SageMaker, as well as the pre-built Hugging Face Deep Learning Containers (DLCs), contributed to the pace of innovation.

Deployment diagram

How Amazon Shopping uses Amazon Rekognition Content Moderation to review harmful images in product reviews

Customers are increasingly turning to product reviews to make informed decisions in their shopping journey, whether they’re purchasing everyday items like a kitchen towel or making major purchases like buying a car. These reviews have transformed into an essential source of information, enabling shoppers to access the opinions and experiences of other customers. As a […]

Intelligent video and audio Q&A with multilingual support using LLMs on Amazon SageMaker

Digital assets are vital visual representations of products, services, culture, and brand identity for businesses in an increasingly digital world. Digital assets, together with recorded user behavior, can facilitate customer engagement by offering interactive and personalized experiences, allowing companies to connect with their target audience on a deeper level. Efficiently discovering and searching for specific […]

Zero-shot and few-shot prompting for the BloomZ 176B foundation model with the simplified Amazon SageMaker JumpStart SDK

Amazon SageMaker JumpStart is a machine learning (ML) hub offering algorithms, models, and ML solutions. With SageMaker JumpStart, ML practitioners can choose from a growing list of best performing and publicly available foundation models (FMs) such as BLOOM, Llama 2, Falcon-40B, Stable Diffusion, OpenLLaMA, Flan-T5/UL2, or FMs from Cohere and LightOn. In this post and […]

Build production-ready generative AI applications for enterprise search using Haystack pipelines and Amazon SageMaker JumpStart with LLMs

In this post, we showcase how to build an end-to-end generative AI application for enterprise search with Retrieval Augmented Generation (RAG) by using Haystack pipelines and the Falcon-40b-instruct model from Amazon SageMaker JumpStart and Amazon OpenSearch Service.