AWS Machine Learning Blog

Category: Artificial Intelligence

Get started with the Redox Amazon HealthLake Connector

Amazon HealthLake is a new, HIPAA-eligible service designed to store, transform, query, and analyze health data at scale. You can bring your healthcare data into Amazon HealthLake using Fast Healthcare Interoperability Resources (FHIR) R4 APIs. If you don’t have your data in FHIR R4, Amazon has collaborated with industry experts to build Amazon HealthLake connectors […]

Read More

Deploy variational autoencoders for anomaly detection with TensorFlow Serving on Amazon SageMaker

Anomaly detection is the process of identifying items, events, or occurrences that have different characteristics from the majority of the data. It has many applications in various fields, like fraud detection for credit cards, insurance, or healthcare; network intrusion detection for cybersecurity; KPI metrics monitoring for critical systems; and predictive maintenance for in-service equipment. There […]

Read More

Run image classification with Amazon SageMaker JumpStart

Last year, AWS announced the general availability of Amazon SageMaker JumpStart, a capability of Amazon SageMaker that helps you quickly and easily get started with machine learning (ML). JumpStart hosts 196 computer vision models, 64 natural language processing (NLP) models, 18 pre-built end-to-end solutions, and 19 example notebooks to help you get started with using […]

Read More

Automate a centralized deployment of Amazon SageMaker Studio with AWS Service Catalog

This post outlines the best practices for provisioning Amazon SageMaker Studio for data science teams and provides reference architectures and AWS CloudFormation templates to help you get started. We use AWS Service Catalog to provision a Studio domain and users. The AWS Service Catalog allows you to provision these centrally without requiring each user to […]

Read More

Defect detection and classification in manufacturing using Amazon Lookout for Vision and Amazon Rekognition Custom Labels

Defect detection during manufacturing processes is a vital step to ensure product quality. The timely detection of faults or defects and taking appropriate actions are essential to reduce operational and quality-related costs. According to Aberdeen’s research, “Many organizations will have true quality-related costs as high as 15 to 20 percent of sales revenue.” The current […]

Read More

Dynamic A/B testing for machine learning models with Amazon SageMaker MLOps projects

In this post, you learn how to create a MLOps project to automate the deployment of an Amazon SageMaker endpoint with multiple production variants for A/B testing. You also deploy a general purpose API and testing infrastructure that includes a multi-armed bandit experiment framework. This testing infrastructure will automatically optimize traffic to the best-performing model […]

Read More

Deploy shadow ML models in Amazon SageMaker

Amazon SageMaker helps data scientists and developers prepare, build, train, and deploy high-quality machine learning (ML) models quickly by bringing together a broad set of capabilities purpose-built for ML. SageMaker accelerates innovation within your organization by providing purpose-built tools for every step of ML development, including labeling, data preparation, feature engineering, statistical bias detection, AutoML, […]

Read More

Optimize workforce in your store using Amazon Rekognition

In this post, we show you how to use Amazon Rekognition and AWS DeepLens to detect, and analyze occupancy in a retail business to optimize workforce utilization. Retailers often need to make decisions to improve the in-store customer experience through personnel management. Having too few or too many employees working can be detrimental to the […]

Read More

Generate a jazz rock track using AWS DeepComposer with machine learning

At AWS, we love sharing our passion for technology and innovation, and AWS DeepComposer is no exception. This service is designed to help everyone learn about generative artificial intelligence (AI) through the language of music. You can use a sample melody, upload your own melody, or play a tune using the virtual or a real […]

Read More

Announcing managed inference for Hugging Face models in Amazon SageMaker

Hugging Face is the technology startup, with an active open-source community, that drove the worldwide adoption of transformer-based models thanks to its eponymous Transformers library. Earlier this year, Hugging Face and AWS collaborated to enable you to train and deploy over 10,000 pre-trained models on Amazon SageMaker. For more information on training Hugging Face models […]

Read More