AWS Machine Learning Blog
Category: Amazon SageMaker
Bring legacy machine learning code into Amazon SageMaker using AWS Step Functions
Tens of thousands of AWS customers use AWS machine learning (ML) services to accelerate their ML development with fully managed infrastructure and tools. For customers who have been developing ML models on premises, such as their local desktop, they want to migrate their legacy ML models to the AWS Cloud to fully take advantage of […]
How VMware built an MLOps pipeline from scratch using GitLab, Amazon MWAA, and Amazon SageMaker
This post is co-written with Mahima Agarwal, Machine Learning Engineer, and Deepak Mettem, Senior Engineering Manager, at VMware Carbon Black VMware Carbon Black is a renowned security solution offering protection against the full spectrum of modern cyberattacks. With terabytes of data generated by the product, the security analytics team focuses on building machine learning (ML) […]
Few-click segmentation mask labeling in Amazon SageMaker Ground Truth Plus
Amazon SageMaker Ground Truth Plus is a managed data labeling service that makes it easy to label data for machine learning (ML) applications. One common use case is semantic segmentation, which is a computer vision ML technique that involves assigning class labels to individual pixels in an image. For example, in video frames captured by […]
Accelerate time to insight with Amazon SageMaker Data Wrangler and the power of Apache Hive
Amazon SageMaker Data Wrangler reduces the time it takes to aggregate and prepare data for machine learning (ML) from weeks to minutes in Amazon SageMaker Studio. Data Wrangler enables you to access data from a wide variety of popular sources (Amazon S3, Amazon Athena, Amazon Redshift, Amazon EMR and Snowflake) and over 40 other third-party sources. […]
Using Amazon SageMaker with Point Clouds: Part 1- Ground Truth for 3D labeling
In this two-part series, we demonstrate how to label and train models for 3D object detection tasks. In part 1, we discuss the dataset we’re using, as well as any preprocessing steps, to understand and label data. In part 2, we walk through how to train a model on your dataset and deploy it to […]
Architect personalized generative AI SaaS applications on Amazon SageMaker
The AI landscape is being reshaped by the rise of generative models capable of synthesizing high-quality data, such as text, images, music, and videos. The course toward democratization of AI helped to further popularize generative AI following the open-source releases for such foundation model families as BERT, T5, GPT, CLIP and, most recently, Stable Diffusion. […]
Use a data-centric approach to minimize the amount of data required to train Amazon SageMaker models
As machine learning (ML) models have improved, data scientists, ML engineers and researchers have shifted more of their attention to defining and bettering data quality. This has led to the emergence of a data-centric approach to ML and various techniques to improve model performance by focusing on data requirements. Applying these techniques allows ML practitioners […]
Use Snowflake as a data source to train ML models with Amazon SageMaker
Amazon SageMaker is a fully managed machine learning (ML) service. With SageMaker, data scientists and developers can quickly and easily build and train ML models, and then directly deploy them into a production-ready hosted environment. Sagemaker provides an integrated Jupyter authoring notebook instance for easy access to your data sources for exploration and analysis, so […]
How Marubeni is optimizing market decisions using AWS machine learning and analytics
This post is co-authored with Hernan Figueroa, Sr. Manager Data Science at Marubeni Power International. Marubeni Power International Inc (MPII) owns and invests in power business platforms in the Americas. An important vertical for MPII is asset management for renewable energy and energy storage assets, which are critical to reduce the carbon intensity of our […]
Portfolio optimization through multidimensional action optimization using Amazon SageMaker RL
Reinforcement learning (RL) encompasses a class of machine learning (ML) techniques that can be used to solve sequential decision-making problems. RL techniques have found widespread applications in numerous domains, including financial services, autonomous navigation, industrial control, and e-commerce. The objective of an RL problem is to train an agent that, given an observation from its […]