AWS Machine Learning Blog

Category: Amazon SageMaker

Using Amazon SageMaker inference pipelines with multi-model endpoints

Businesses are increasingly deploying multiple machine learning (ML) models to serve precise and accurate predictions to their consumers. Consider a media company that wants to provide recommendations to its subscribers. The company may want to employ different custom models for recommending different categories of products—such as movies, books, music, and articles. If the company wants […]

Read More

Time series forecasting using unstructured data with Amazon Forecast and the Amazon SageMaker Neural Topic Model

As the volume of unstructured data such as text and voice continues to grow, businesses are increasingly looking for ways to incorporate this data into their time series predictive modeling workflows. One example use case is transcribing calls from call centers to forecast call handle times and improve call volume forecasting. In the retail or […]

Read More

Building a medical image search platform on AWS

Improving radiologist efficiency and preventing burnout is a primary goal for healthcare providers. A nationwide study published in Mayo Clinic Proceedings in 2015 showed radiologist burnout percentage at a concerning 61% [1]. In additon, the report concludes that “burnout and satisfaction with work-life balance in US physicians worsened from 2011 to 2014. More than half […]

Read More

Streamlining data labeling for YOLO object detection in Amazon SageMaker Ground Truth

Object detection is a common task in computer vision (CV), and the YOLOv3 model is state-of-the-art in terms of accuracy and speed. In transfer learning, you obtain a model trained on a large but generic dataset and retrain the model on your custom dataset. One of the most time-consuming parts in transfer learning is collecting […]

Read More

Making cycling safer with AWS DeepLens and Amazon SageMaker object detection

According to the 2018 National Highway Traffic Safety Administration (NHTSA) Traffic Safety Facts, in 2018, there were 857 fatal bicycle and motor vehicle crashes and an additional estimated 47,000 cycling injuries in the US . While motorists often accuse cyclists of being the cause of bike-car accidents, the analysis shows that this is not the […]

Read More

Predicting Defender Trajectories in NFL’s Next Gen Stats

NFL’s Next Gen Stats (NGS) powered by AWS accurately captures player and ball data in real time for every play and every NFL game—over 300 million data points per season—through the extensive use of sensors in players’ pads and the ball. With this rich set of tracking data, NGS uses AWS machine learning (ML) technology […]

Read More

Amazon SageMaker price reductions: Up to 18% lower prices on ml.p3 and ml.p2 instances

Effective October 1st, 2020, we’re reducing the prices for ml.p3 and ml.p2 instances in Amazon SageMaker by up to 18% so you can maximize your machine learning (ML) budgets and innovate with deep learning using these accelerated compute instances. The new price reductions apply to ml.p3 and ml.p2 instances of all sizes for Amazon SageMaker […]

Read More

Onboarding Amazon SageMaker Studio with AWS SSO and Okta Universal Directory

In 2019, AWS announced Amazon SageMaker Studio, a unified integrated development environment (IDE) for machine learning (ML) development. You can write code, track experiments, visualize data, and perform debugging and monitoring within a single, integrated visual interface. Amazon SageMaker Studio supports a single sign-on experience with AWS Single Sign-On (AWS SSO) authentication. External identity provider […]

Read More

Running on-demand, serverless Apache Spark data processing jobs using Amazon SageMaker managed Spark containers and the Amazon SageMaker SDK

Apache Spark is a unified analytics engine for large scale, distributed data processing. Typically, businesses with Spark-based workloads on AWS use their own stack built on top of Amazon Elastic Compute Cloud (Amazon EC2), or Amazon EMR to run and scale Apache Spark, Hive, Presto, and other big data frameworks. This is useful for persistent […]

Read More

Moving from notebooks to automated ML pipelines using Amazon SageMaker and AWS Glue

A typical machine learning (ML) workflow involves processes such as data extraction, data preprocessing, feature engineering, model training and evaluation, and model deployment. As data changes over time, when you deploy models to production, you want your model to learn continually from the stream of data. This means supporting the model’s ability to autonomously learn […]

Read More