AWS Machine Learning Blog

Category: Learning Levels

Host the Whisper Model on Amazon SageMaker: exploring inference options

OpenAI Whisper is an advanced automatic speech recognition (ASR) model with an MIT license. ASR technology finds utility in transcription services, voice assistants, and enhancing accessibility for individuals with hearing impairments. This state-of-the-art model is trained on a vast and diverse dataset of multilingual and multitask supervised data collected from the web. Its high accuracy […]

Build financial search applications using the Amazon Bedrock Cohere multilingual embedding model

Enterprises have access to massive amounts of data, much of which is difficult to discover because the data is unstructured. Conventional approaches to analyzing unstructured data use keyword or synonym matching. They don’t capture the full context of a document, making them less effective in dealing with unstructured data. In contrast, text embeddings use machine […]

Inference Llama 2 models with real-time response streaming using Amazon SageMaker

With the rapid adoption of generative AI applications, there is a need for these applications to respond in time to reduce the perceived latency with higher throughput. Foundation models (FMs) are often pre-trained on vast corpora of data with parameters ranging in scale of millions to billions and beyond. Large language models (LLMs) are a […]

Generating value from enterprise data: Best practices for Text2SQL and generative AI

Generative AI has opened up a lot of potential in the field of AI. We are seeing numerous uses, including text generation, code generation, summarization, translation, chatbots, and more. One such area that is evolving is using natural language processing (NLP) to unlock new opportunities for accessing data through intuitive SQL queries. Instead of dealing […]

15705-deep-dive-architecture

Overcoming common contact center challenges with generative AI and Amazon SageMaker Canvas

Great customer experience provides a competitive edge and helps create brand differentiation. As per the Forrester report, The State Of Customer Obsession, 2022, being customer-first can make a sizable impact on an organization’s balance sheet, as organizations embracing this methodology are surpassing their peers in revenue growth. Despite contact centers being under constant pressure to […]

Amazon Security Lake SageMaker IPInsights Solution Architecture

Identify cybersecurity anomalies in your Amazon Security Lake data using Amazon SageMaker

In this post, you learn how to prepare data sourced from Amazon Security Lake, and then train and deploy an ML model using an IP Insights algorithm in SageMaker. This model identifies anomalous network traffic or behavior which can then be composed as part of a larger end-to-end security solution.

Driving advanced analytics outcomes at scale using Amazon SageMaker powered PwC’s Machine Learning Ops Accelerator

This post was written in collaboration with Ankur Goyal and Karthikeyan Chokappa from PwC Australia’s Cloud & Digital business. Artificial intelligence (AI) and machine learning (ML) are becoming an integral part of systems and processes, enabling decisions in real time, thereby driving top and bottom-line improvements across organizations. However, putting an ML model into production […]

Accelerating time-to-insight with MongoDB time series collections and Amazon SageMaker Canvas

This is a guest post co-written with Babu Srinivasan from MongoDB. As industries evolve in today’s fast-paced business landscape, the inability to have real-time forecasts poses significant challenges for industries heavily reliant on accurate and timely insights. The absence of real-time forecasts in various industries presents pressing business challenges that can significantly impact decision-making and […]

Use Amazon DocumentDB to build no-code machine learning solutions in Amazon SageMaker Canvas

We are excited to announce the launch of Amazon DocumentDB (with MongoDB compatibility) integration with Amazon SageMaker Canvas, allowing Amazon DocumentDB customers to build and use generative AI and machine learning (ML) solutions without writing code. Amazon DocumentDB is a fully managed native JSON document database that makes it straightforward and cost-effective to operate critical […]

Boost productivity on Amazon SageMaker Studio: Introducing JupyterLab Spaces and generative AI tools

Amazon SageMaker Studio offers a broad set of fully managed integrated development environments (IDEs) for machine learning (ML) development, including JupyterLab, Code Editor based on Code-OSS (Visual Studio Code Open Source), and RStudio. It provides access to the most comprehensive set of tools for each step of ML development, from preparing data to building, training, […]