AWS Machine Learning Blog

Category: Learning Levels

Building AI chatbots using Amazon Lex and Amazon Kendra for filtering query results based on user context

Amazon Kendra is an intelligent search service powered by machine learning (ML). It indexes the documents stored in a wide range of repositories and finds the most relevant document based on the keywords or natural language questions the user has searched for. In some scenarios, you need the search results to be filtered based on […]

Configure an AWS DeepRacer environment for training and log analysis using the AWS CDK

This post is co-written by Zdenko Estok, Cloud Architect at Accenture and Sakar Selimcan, DeepRacer SME at Accenture. With the increasing use of artificial intelligence (AI) and machine learning (ML) for a vast majority of industries (ranging from healthcare to insurance, from manufacturing to marketing), the primary focus shifts to efficiency when building and training […]

Model explanation for Cover 3 Zone comes right after the ball snap

Identifying defense coverage schemes in NFL’s Next Gen Stats

This post is co-written with Jonathan Jung, Mike Band, Michael Chi, and Thompson Bliss at the National Football League. A coverage scheme refers to the rules and responsibilities of each football defender tasked with stopping an offensive pass. It is at the core of understanding and analyzing any football defensive strategy. Classifying the coverage scheme […]

Detect signatures on documents or images using the signatures feature in Amazon Textract

Amazon Textract is a machine learning (ML) service that automatically extracts text, handwriting, and data from any document or image. AnalyzeDocument Signatures is a feature within Amazon Textract that offers the ability to automatically detect signatures on any document. This can reduce the need for human review, custom code, or ML experience. In this post, […]

Monitoring Lake Mead drought using the new Amazon SageMaker geospatial capabilities

Earth’s changing climate poses an increased risk of drought due to global warming. Since 1880, the global temperature has increased 1.01 °C. Since 1993, sea levels have risen 102.5 millimeters. Since 2002, the land ice sheets in Antarctica have been losing mass at a rate of 151.0 billion metric tons per year. In 2022, the […]

Optimize your machine learning deployments with auto scaling on Amazon SageMaker

Machine learning (ML) has become ubiquitous. Our customers are employing ML in every aspect of their business, including the products and services they build, and for drawing insights about their customers. To build an ML-based application, you have to first build the ML model that serves your business requirement. Building ML models involves preparing the […]

Amazon SageMaker Automatic Model Tuning now supports three new completion criteria for hyperparameter optimization

Amazon SageMaker has announced the support of three new completion criteria for Amazon SageMaker automatic model tuning, providing you with an additional set of levers to control the stopping criteria of the tuning job when finding the best hyperparameter configuration for your model. In this post, we discuss these new completion criteria, when to use them, and […]

Create powerful self-service experiences with Amazon Lex on Talkdesk CX Cloud contact center

This blog post is co-written with Bruno Mateus, Jonathan Diedrich and Crispim Tribuna at Talkdesk. Contact centers are using artificial intelligence (AI) and natural language processing (NLP) technologies to build a personalized customer experience and deliver effective self-service support through conversational bots. This is the first of a two-part series dedicated to the integration of […]

Image classification model selection using Amazon SageMaker JumpStart

Researchers continue to develop new model architectures for common machine learning (ML) tasks. One such task is image classification, where images are accepted as input and the model attempts to classify the image as a whole with object label outputs. With many models available today that perform this image classification task, an ML practitioner may […]

Predict football punt and kickoff return yards with fat-tailed distribution using GluonTS

Today, the NFL is continuing their journey to increase the number of statistics provided by the Next Gen Stats Platform to all 32 teams and fans alike. With advanced analytics derived from machine learning (ML), the NFL is creating new ways to quantify football, and to provide fans with the tools needed to increase their […]