AWS Machine Learning Blog
How GoDaddy built a category generation system at scale with batch inference for Amazon Bedrock
This post provides an overview of a custom solution developed by the for GoDaddy, a domain registrar, registry, web hosting, and ecommerce company that seeks to make entrepreneurship more accessible by using generative AI to provide personalized business insights to over 21 million customers. In this collaboration, the Generative AI Innovation Center team created an accurate and cost-efficient generative AI–based solution using batch inference in Amazon Bedrock, helping GoDaddy improve their existing product categorization system.
Benchmarking customized models on Amazon Bedrock using LLMPerf and LiteLLM
This post begins a blog series exploring DeepSeek and open FMs on Amazon Bedrock Custom Model Import. It covers the process of performance benchmarking of custom models in Amazon Bedrock using popular open source tools: LLMPerf and LiteLLM. It includes a notebook that includes step-by-step instructions to deploy a DeepSeek-R1-Distill-Llama-8B model, but the same steps apply for any other model supported by Amazon Bedrock Custom Model Import.
Creating asynchronous AI agents with Amazon Bedrock
The integration of generative AI agents into business processes is poised to accelerate as organizations recognize the untapped potential of these technologies. Advancements in multimodal artificial intelligence (AI), where agents can understand and generate not just text but also images, audio, and video, will further broaden their applications. This post will discuss agentic AI driven architecture and ways of implementing.
How to run Qwen 2.5 on AWS AI chips using Hugging Face libraries
In this post, we outline how to get started with deploying the Qwen 2.5 family of models on an Inferentia instance using Amazon Elastic Compute Cloud (Amazon EC2) and Amazon SageMaker using the Hugging Face Text Generation Inference (TGI) container and the Hugging Face Optimum Neuron library. Qwen2.5 Coder and Math variants are also supported.
Revolutionizing customer service: MaestroQA’s integration with Amazon Bedrock for actionable insight
In this post, we dive deeper into one of MaestroQA’s key features—conversation analytics, which helps support teams uncover customer concerns, address points of friction, adapt support workflows, and identify areas for coaching through the use of Amazon Bedrock. We discuss the unique challenges MaestroQA overcame and how they use AWS to build new features, drive customer insights, and improve operational inefficiencies.
Optimize hosting DeepSeek-R1 distilled models with Hugging Face TGI on Amazon SageMaker AI
In this post, we demonstrate how to optimize hosting DeepSeek-R1 distilled models with Hugging Face Text Generation Inference (TGI) on Amazon SageMaker AI.
Exploring creative possibilities: A visual guide to Amazon Nova Canvas
In this blog post, we showcase a curated gallery of visuals generated by Nova Canvas—categorized by real-world use cases—from marketing and product visualization to concept art and design exploration. Each image is paired with the prompt and parameters that generated it, providing a practical starting point for your own AI-driven creativity. Whether you’re crafting specific types of images, optimizing workflows, or simply seeking inspiration, this guide will help you unlock the full potential of Amazon Nova Canvas.
Benchmarking Amazon Nova and GPT-4o models with FloTorch
A recent evaluation conducted by FloTorch compared the performance of Amazon Nova models with OpenAI’s GPT-4o. In this post, we discuss the findings from this benchmarking in more detail.
Deploy DeepSeek-R1 distilled models on Amazon SageMaker using a Large Model Inference container
Deploying DeepSeek models on SageMaker AI provides a robust solution for organizations seeking to use state-of-the-art language models in their applications. In this post, we show how to use the distilled models in SageMaker AI, which offers several options to deploy the distilled versions of the R1 model.
From fridge to table: Use Amazon Rekognition and Amazon Bedrock to generate recipes and combat food waste
In this post, we walk through how to build the FoodSavr solution (fictitious name used for the purposes of this post) using Amazon Rekognition Custom Labels to detect the ingredients and generate personalized recipes using Anthropic’s Claude 3.0 on Amazon Bedrock. We demonstrate an end-to-end architecture where a user can upload an image of their fridge, and using the ingredients found there (detected by Amazon Rekognition), the solution will give them a list of recipes (generated by Amazon Bedrock). The architecture also recognizes missing ingredients and provides the user with a list of nearby grocery stores.