AWS Machine Learning Blog

Announcing New Tools to Help Every Business Embrace Generative AI

From startups to enterprises, organizations of all sizes are getting started with generative AI. They want to capitalize on generative AI and translate the momentum from betas, prototypes, and demos into real-world productivity gains and innovations. But what do organizations need to bring generative AI into the enterprise and make it real? When we talk […]

Simplify medical image classification using Amazon SageMaker Canvas

Analyzing medical images plays a crucial role in diagnosing and treating diseases. The ability to automate this process using machine learning (ML) techniques allows healthcare professionals to more quickly diagnose certain cancers, coronary diseases, and ophthalmologic conditions. However, one of the key challenges faced by clinicians and researchers in this field is the time-consuming and […]

Create an HCLS document summarization application with Falcon using Amazon SageMaker JumpStart

Healthcare and life sciences (HCLS) customers are adopting generative AI as a tool to get more from their data. Use cases include document summarization to help readers focus on key points of a document and transforming unstructured text into standardized formats to highlight important attributes. With unique data formats and strict regulatory requirements, customers are […]

Automate prior authorization using CRD with CDS Hooks and AWS HealthLake

Prior authorization is a crucial process in healthcare that involves the approval of medical treatments or procedures before they are carried out. This process is necessary to ensure that patients receive the right care and that healthcare providers are following the correct procedures. However, prior authorization can be a time-consuming and complex process that requires […]

Code Llama code generation models from Meta are now available via Amazon SageMaker JumpStart

Today, we are excited to announce Code Llama foundation models, developed by Meta, are available for customers through Amazon SageMaker JumpStart to deploy with one click for running inference. Code Llama is a state-of-the-art large language model (LLM) capable of generating code and natural language about code from both code and natural language prompts. Code […]

MLOps pipeline scribble

Build an end-to-end MLOps pipeline for visual quality inspection at the edge – Part 1

A successful deployment of a machine learning (ML) model in a production environment heavily relies on an end-to-end ML pipeline. Although developing such a pipeline can be challenging, it becomes even more complex when dealing with an edge ML use case. Machine learning at the edge is a concept that brings the capability of running […]

Metal tag with scratches

Build an end-to-end MLOps pipeline for visual quality inspection at the edge – Part 2

In Part 1 of this series, we drafted an architecture for an end-to-end MLOps pipeline for a visual quality inspection use case at the edge. It is architected to automate the entire machine learning (ML) process, from data labeling to model training and deployment at the edge. The focus on managed and serverless services reduces […]

Architecture diagram

Build an end-to-end MLOps pipeline for visual quality inspection at the edge – Part 3

This is Part 3 of our series where we design and implement an MLOps pipeline for visual quality inspection at the edge. In this post, we focus on how to automate the edge deployment part of the end-to-end MLOps pipeline. We show you how to use AWS IoT Greengrass to manage model inference at the […]

Build a crop segmentation machine learning model with Planet data and Amazon SageMaker geospatial capabilities

In this analysis, we use a K-nearest neighbors (KNN) model to conduct crop segmentation, and we compare these results with ground truth imagery on an agricultural region. Our results reveal that the classification from the KNN model is more accurately representative of the state of the current crop field in 2017 than the ground truth classification data from 2015. These results are a testament to the power of Planet’s high-cadence geospatial imagery. Agricultural fields change often, sometimes multiple times a season, and having high-frequency satellite imagery available to observe and analyze this land can provide immense value to our understanding of agricultural land and quickly-changing environments.

Accenture creates a Knowledge Assist solution using generative AI services on AWS

This post is co-written with Ilan Geller and Shuyu Yang from Accenture. Enterprises today face major challenges when it comes to using their information and knowledge bases for both internal and external business operations. With constantly evolving operations, processes, policies, and compliance requirements, it can be extremely difficult for employees and customers to stay up […]

Speed up your time series forecasting by up to 50 percent with Amazon SageMaker Canvas UI and AutoML APIs

We’re excited to announce that Amazon SageMaker Canvas now offers a quicker and more user-friendly way to create machine learning models for time-series forecasting. SageMaker Canvas is a visual point-and-click service that enables business analysts to generate accurate machine learning (ML) models without requiring any machine learning experience or having to write a single line of code. SageMaker […]