AWS Machine Learning Blog

Welcome to a New Era of Building in the Cloud with Generative AI on AWS

We believe generative AI has the potential over time to transform virtually every customer experience we know. The number of companies launching generative AI applications on AWS is substantial and building quickly, including adidas, Booking.com, Bridgewater Associates, Clariant, Cox Automotive, GoDaddy, and LexisNexis Legal & Professional, to name just a few. Innovative startups like Perplexity […]

Boosting developer productivity: How Deloitte uses Amazon SageMaker Canvas for no-code/low-code machine learning

The ability to quickly build and deploy machine learning (ML) models is becoming increasingly important in today’s data-driven world. However, building ML models requires significant time, effort, and specialized expertise. From data collection and cleaning to feature engineering, model building, tuning, and deployment, ML projects often take months for developers to complete. And experienced data […]

Experience the new and improved Amazon SageMaker Studio

Launched in 2019, Amazon SageMaker Studio provides one place for all end-to-end machine learning (ML) workflows, from data preparation, building and experimentation, training, hosting, and monitoring. As we continue to innovate to increase data science productivity, we’re excited to announce the improved SageMaker Studio experience, which allows users to select the managed Integrated Development Environment (IDE) […]

Amazon SageMaker simplifies setting up SageMaker domain for enterprises to onboard their users to SageMaker

As organizations scale the adoption of machine learning (ML), they are looking for efficient and reliable ways to deploy new infrastructure and onboard teams to ML environments. One of the challenges is setting up authentication and fine-grained permissions for users based on their roles and activities. For example, MLOps engineers typically perform model deployment activities, […]

Package and deploy classical ML and LLMs easily with Amazon SageMaker, part 2: Interactive User Experiences in SageMaker Studio

Amazon SageMaker is a fully managed service that enables developers and data scientists to quickly and easily build, train, and deploy machine learning (ML) models at scale. SageMaker makes it easy to deploy models into production directly through API calls to the service. Models are packaged into containers for robust and scalable deployments. SageMaker provides […]

Package and deploy classical ML and LLMs easily with Amazon SageMaker, part 1: PySDK Improvements

Amazon SageMaker is a fully managed service that enables developers and data scientists to quickly and effortlessly build, train, and deploy machine learning (ML) models at any scale. SageMaker makes it straightforward to deploy models into production directly through API calls to the service. Models are packaged into containers for robust and scalable deployments. Although […]

New – Code Editor, based on Code-OSS VS Code Open Source now available in Amazon SageMaker Studio

Today, we are excited to announce support for Code Editor, a new integrated development environment (IDE) option in Amazon SageMaker Studio. Code Editor is based on Code-OSS, Visual Studio Code Open Source, and provides access to the familiar environment and tools of the popular IDE that machine learning (ML) developers know and love, fully integrated […]

Scale foundation model inference to hundreds of models with Amazon SageMaker – Part 1

As democratization of foundation models (FMs) becomes more prevalent and demand for AI-augmented services increases, software as a service (SaaS) providers are looking to use machine learning (ML) platforms that support multiple tenants—for data scientists internal to their organization and external customers. More and more companies are realizing the value of using FMs to generate […]

Reduce model deployment costs by 50% on average using the latest features of Amazon SageMaker

As organizations deploy models to production, they are constantly looking for ways to optimize the performance of their foundation models (FMs) running on the latest accelerators, such as AWS Inferentia and GPUs, so they can reduce their costs and decrease response latency to provide the best experience to end-users. However, some FMs don’t fully utilize […]

Minimize real-time inference latency by using Amazon SageMaker routing strategies

Amazon SageMaker makes it straightforward to deploy machine learning (ML) models for real-time inference and offers a broad selection of ML instances spanning CPUs and accelerators such as AWS Inferentia. As a fully managed service, you can scale your model deployments, minimize inference costs, and manage your models more effectively in production with reduced operational […]