AWS Big Data Blog

Category: Intermediate (200)

Automate replication of row-level security from AWS Lake Formation to Amazon QuickSight

This post outlines a solution to automatically replicate the entitlements for readers from the source (AWS Lake Formation) to Amazon QuickSight. This solution can be used even when the authentication method in Amazon QuickSight is not using IAM Identity Center and can work with both direct query and SPICE datasets in Amazon QuickSight.

Build end-to-end Apache Spark pipelines with Amazon MWAA, Batch Processing Gateway, and Amazon EMR on EKS clusters

This post shows how to enhance the multi-cluster solution by integrating Amazon Managed Workflows for Apache Airflow (Amazon MWAA) with BPG. By using Amazon MWAA, we add job scheduling and orchestration capabilities, enabling you to build a comprehensive end-to-end Spark-based data processing pipeline.

Read and write Apache Iceberg tables using AWS Lake Formation hybrid access mode

In this post, we demonstrate how to use Lake Formation for read access while continuing to use AWS Identity and Access Management (IAM) policy-based permissions for write workloads that update the schema and upsert (insert and update combined) data records into the Iceberg tables.

Integrate ThoughtSpot with Amazon Redshift using AWS IAM Identity Center

In this post, we walk you through the process of setting up ThoughtSpot integration with Amazon Redshift using IAM Identity Center authentication. The solution provides a secure, streamlined analytics environment that empowers your team to focus on what matters most: discovering and sharing valuable business insights.

Correlate telemetry data with Amazon OpenSearch Service and Amazon Managed Grafana

In this post, we show you how to use Amazon OpenSearch Service and Amazon Managed Grafana to correlate the various observability signals that improve root cause analysis, thereby resulting in reduced Mean Time to Resolution (MTTR). We also provide a reference solution that can be used at scale for proactive monitoring of enterprise applications to avoid a problem before they occur.

Amazon EMR 7.5 runtime for Apache Spark and Iceberg can run Spark workloads 3.6 times faster than Spark 3.5.3 and Iceberg 1.6.1

The Amazon EMR runtime for Apache Spark offers a high-performance runtime environment while maintaining 100% API compatibility with open source Apache Spark and Apache Iceberg table format. In this post, we demonstrate the performance benefits of using the Amazon EMR 7.5 runtime for Spark and Iceberg compared to open source Spark 3.5.3 with Iceberg 1.6.1 tables on the TPC-DS 3TB benchmark v2.13.

Run Apache XTable in AWS Lambda for background conversion of open table formats

In this post, we explore how Apache XTable, combined with the AWS Glue Data Catalog, enables background conversions between open table formats residing on Amazon S3-based data lakes, with minimal to no changes to existing pipelines, in a scalable and cost-effective way.