AWS Machine Learning Blog

Category: Artificial Intelligence

Detect multicollinearity, target leakage, and feature correlation with Amazon SageMaker Data Wrangler

In machine learning (ML), data quality has direct impact on model quality. This is why data scientists and data engineers spend significant amount of time perfecting training datasets. Nevertheless, no dataset is perfect—there are trade-offs to the preprocessing techniques such as oversampling, normalization, and imputation. Also, mistakes and errors could creep in at various stages […]

New Amazon HealthLake capabilities enable next-generation imaging solutions and precision health analytics

At AWS, we have been investing in healthcare since Day 1 with customers including Moderna, Rush University Medical Center, and the NHS who have built breakthrough innovations in the cloud. From developing public health analytics hubs, to improving health equity and patient outcomes, to developing a COVID-19 vaccine in just 65 days, our customers are utilizing […]

Refit trained parameters on large datasets using Amazon SageMaker Data Wrangler

Amazon SageMaker Data Wrangler helps you understand, aggregate, transform, and prepare data for machine learning (ML) from a single visual interface. It contains over 300 built-in data transformations so you can quickly normalize, transform, and combine features without having to write any code. Data science practitioners generate, observe, and process data to solve business problems […]

Run machine learning inference workloads on AWS Graviton-based instances with Amazon SageMaker

Today, we are launching Amazon SageMaker inference on AWS Graviton to enable you to take advantage of the price, performance, and efficiency benefits that come from Graviton chips. Graviton-based instances are available for model inference in SageMaker. This post helps you migrate and deploy a machine learning (ML) inference workload from x86 to Graviton-based instances […]

Amazon SageMaker Studio Lab continues to democratize ML with more scale and functionality

To make machine learning (ML) more accessible, Amazon launched Amazon SageMaker Studio Lab at AWS re:Invent 2021. Today, tens of thousands of customers use it every day to learn and experiment with ML for free. We made it simple to get started with just an email address, without the need for installs, setups, credit cards, […]

How Prodege saved $1.5 million in annual human review costs using low-code computer vision AI

This post was co-authored by Arun Gupta, the Director of Business Intelligence at Prodege, LLC. Prodege is a data-driven marketing and consumer insights platform comprised of consumer brands—Swagbucks, MyPoints, Tada, ySense, InboxDollars, InboxPounds, DailyRewards, PollFish, and Upromise—along with a complementary suite of business solutions for marketers and researchers. Prodege has 120 million users and has […]

Identifying and avoiding common data issues while building no code ML models with Amazon SageMaker Canvas

Business analysts work with data and like to analyze, explore, and understand data to achieve effective business outcomes. To address business problems, they often rely on machine learning (ML) practitioners such as data scientists to assist with techniques such as utilizing ML to build models using existing data and generate predictions. However, it isn’t always […]

Brain tumor segmentation at scale using AWS Inferentia

Medical imaging is an important tool for the diagnosis and localization of disease. Over the past decade, collections of medical images have grown rapidly, and open repositories such as The Cancer Imaging Archive and Imaging Data Commons have democratized access to this vast imaging data. Computational tools such as machine learning (ML) and artificial intelligence […]

Model hosting patterns in Amazon SageMaker, Part 6: Best practices in testing and updating models on SageMaker

Amazon SageMaker is a fully managed service that provides developers and data scientists the ability to quickly build, train, and deploy machine learning (ML) models. With SageMaker, you can deploy your ML models on hosted endpoints and get inference results in real time. You can easily view the performance metrics for your endpoints in Amazon […]

“ID + Selfie” – Improving digital identity verification using AWS

The COVID-19 global pandemic has accelerated the need to verify and onboard users online across several industries, such as financial services, insurance, and healthcare. When it comes to user experience it is crucial to provide a frictionless transaction while maintaining a high standard for identity verification.  The question is, how do you verify real people […]