AWS Machine Learning Blog
Category: Amazon ML Solutions Lab
Developing advanced machine learning systems at Trumid with the Deep Graph Library for Knowledge Embedding
This is a guest post co-written with Mutisya Ndunda from Trumid. Like many industries, the corporate bond market doesn’t lend itself to a one-size-fits-all approach. It’s vast, liquidity is fragmented, and institutional clients demand solutions tailored to their specific needs. Advances in AI and machine learning (ML) can be employed to improve the customer experience, […]
Localize content into multiple languages using AWS machine learning services
Over the last few years, online education platforms have seen an increase in adoption of and an uptick in demand for video-based learnings because it offers an effective medium to engage learners. To expand to international markets and address a culturally and linguistically diverse population, businesses are also looking at diversifying their learning offerings by […]
Create, train, and deploy a billion-parameter language model on terabytes of data with TensorFlow and Amazon SageMaker
The increasing size of language models has been one of the biggest trends in natural language processing (NLP) in recent years. Since 2018, we’ve seen unprecedented development and deployment of ever-larger language models, including BERT and its variants, GPT-2, T-NLG, and GPT-3 (175 billion parameters). These models have pushed the boundaries of possible architectural innovations. […]
Build a custom Q&A dataset using Amazon SageMaker Ground Truth to train a Hugging Face Q&A NLU model
In recent years, natural language understanding (NLU) has increasingly found business value, fueled by model improvements as well as the scalability and cost-efficiency of cloud-based infrastructure. Specifically, the Transformer deep learning architecture, often implemented in the form of BERT models, has been highly successful, but training, fine-tuning, and optimizing these models has proven to be […]
Build a custom entity recognizer for PDF documents using Amazon Comprehend
In many industries, it’s critical to extract custom entities from documents in a timely manner. This can be challenging. Insurance claims, for example, often contain dozens of important attributes (such as dates, names, locations, and reports) sprinkled across lengthy and dense documents. Manually scanning and extracting such information can be error-prone and time-consuming. Rule-based software […]
Optimize customer engagement with reinforcement learning
This is a guest post co-authored by Taylor Names, Staff Machine Learning Engineer, Dev Gupta, Machine Learning Manager, and Argie Angeleas, Senior Product Manager at Ibotta. Ibotta is an American technology company that enables users with its desktop and mobile apps to earn cash back on in-store, mobile app, and online purchases with receipt submission, […]
Automate digitization of transactional documents with human oversight using Amazon Textract and Amazon A2I
In this post, we present a solution for digitizing transactional documents using Amazon Textract and incorporate a human review using Amazon Augmented AI (A2I). You can find the solution source at our GitHub repository. Organizations must frequently process scanned transactional documents with structured text so they can perform operations such as fraud detection or financial […]
Label text for aspect-based sentiment analysis using SageMaker Ground Truth
This blog post was last reviewed and updated August, 2022 with revised sample document links. The Amazon Machine Learning Solutions Lab (MLSL) recently created a tool for annotating text with named-entity recognition (NER) and relationship labels using Amazon SageMaker Ground Truth. Annotators use this tool to label text with named entities and link their relationships, thereby […]
Industrial automation at Tyson with computer vision, AWS Panorama, and Amazon SageMaker
This is the first in a two-part blog series on how Tyson Foods, Inc., is utilizing machine learning to automate industrial processes at their meat packing plants by bringing the benefits of artificial intelligence applications at the edge. In part one, we discuss an inventory counting application for packaging lines built using Amazon SageMaker and […]
Train graph neural nets for millions of proteins on Amazon SageMaker and Amazon DocumentDB (with MongoDB compatibility)
There are over 180,000 unique proteins with 3D structures determined, with tens of thousands new structures resolved every year. This is only a small fraction of the 200 million known proteins with distinctive sequences. Recent deep learning algorithms such as AlphaFold can accurately predict 3D structures of proteins using their sequences, which help scale the […]