AWS Machine Learning Blog
Category: Learning Levels
Operationalize your Amazon SageMaker Studio notebooks as scheduled notebook jobs
Amazon SageMaker Studio provides a fully managed solution for data scientists to interactively build, train, and deploy machine learning (ML) models. In addition to the interactive ML experience, data workers also seek solutions to run notebooks as ephemeral jobs without the need to refactor code as Python modules or learn DevOps tools and best practices […]
Stability AI builds foundation models on Amazon SageMaker
We’re thrilled to announce that Stability AI has selected AWS as its preferred cloud provider to power its state-of-the-art AI models for image, language, audio, video, and 3D content generation. Stability AI is a community-driven, open-source artificial intelligence (AI) company developing breakthrough technologies. With Amazon SageMaker, Stability AI will build AI models on compute clusters […]
Launch Amazon SageMaker Autopilot experiments directly from within Amazon SageMaker Pipelines to easily automate MLOps workflows
Amazon SageMaker Autopilot, a low-code machine learning (ML) service that automatically builds, trains, and tunes the best ML models based on tabular data, is now integrated with Amazon SageMaker Pipelines, the first purpose-built continuous integration and continuous delivery (CI/CD) service for ML. This enables the automation of an end-to-end flow of building ML models using […]
AI21 Jurassic-1 foundation model is now available on Amazon SageMaker
Today we are excited to announce that AI21 Jurassic-1 (J1) foundation models are available for customers using Amazon SageMaker. Jurassic-1 models are highly versatile, capable of both human-like text generation, as well as solving complex tasks such as question answering, text classification, and many others. You can easily try out this model and use it […]
Optimize hyperparameters with Amazon SageMaker Automatic Model Tuning
Machine learning (ML) models are taking the world by storm. Their performance relies on using the right training data and choosing the right model and algorithm. But it doesn’t end here. Typically, algorithms defer some design decisions to the ML practitioner to adopt for their specific data and task. These deferred design decisions manifest themselves […]
Apply fine-grained data access controls with AWS Lake Formation and Amazon EMR from Amazon SageMaker Studio
June 2023: This post was reviewed and updated to reflect the launch of EMR release 6.10 Amazon SageMaker Studio is a fully integrated development environment (IDE) for machine learning (ML) that enables data scientists and developers to perform every step of the ML workflow, from preparing data to building, training, tuning, and deploying models. Studio […]
Implementing Amazon Forecast in the retail industry: A journey from POC to production
Amazon Forecast is a fully managed service that uses statistical and machine learning (ML) algorithms to deliver highly accurate time-series forecasts. Recently, based on Amazon Forecast, we helped one of our retail customers achieve accurate demand forecasting, within 8 weeks. The solution improved the manual forecast by an average of 10% in regards to the […]
Accelerate multilingual workflows with a customizable translation solution built with Amazon Translate
Enterprises often need to communicate effectively to a large base of customers, partners, and stakeholders across several different languages. They need to translate and localize content such as marketing materials, product content assets, operational manuals, and legal documents. Each business unit in the enterprise has different translation workloads and often manages their own translation requirements […]
Real-time analysis of customer sentiment using AWS
Companies that sell products or services online need to constantly monitor customer reviews left on their website after purchasing a product. The company’s marketing and customer service departments analyze these reviews to understand customer sentiment. For example, marketing could use this data to create campaigns targeting different customer segments. Customer service departments could use this […]
Identify key insights from text documents through fine-tuning and HPO with Amazon SageMaker JumpStart
Organizations across industries such as retail, banking, finance, healthcare, manufacturing, and lending often have to deal with vast amounts of unstructured text documents coming from various sources, such as news, blogs, product reviews, customer support channels, and social media. These documents contain critical information that’s key to making important business decisions. As an organization grows, […]