Amazon Web Services ブログ

Category: General

API と OSS 、蓄積したデータで精度を改善するならどちらの基盤モデルを選択すべきか : 質問回答編

本文書では、サービスや製品に蓄積したデータを活用した精度改善を視野に入れた場合、 API と OSS のどちらがコスト効率が良くなるのかを検証します。 API は Amazon Bedrock や ChatGPT などのサービス、 OSS は Hugging Face などで公開されている基盤モデルを GPU インスタンスでホスティングする利用形態を想定しています。本 2 つの手法でデータをプロンプトに組み込む、追加学習に使用した場合の精度とコストを比較します。

クラウドを用いた PGA ツアーでのボール位置追跡システム

PGAツアーはゴルフの観戦体験を向上させるために、リアルタイムのデータを活用しています。次世代のボール位置トラッキングシステムの開発のため、Amazon Generative AI Innovation Center (GAIIC) は、PGAツアーのイベントで得たデータを用いて、畳み込みニューラルネットワークを連結したパイプラインを開発しました。この投稿では、そのパイプラインの開発とパフォーマンスの評価について説明します。

「AWS Cloud Quest: Recertify Cloud Practitioner (Japanese) 日本語版」で、「AWS Certified Cloud Practitioner」が再認定できます!

「AWS Cloud Quest: Recertify Cloud Practitioner (Japanese) 日本語版」をクリアすることで、「AWS Certified Cloud Practitioner」認定を更新することができます。6ヶ月以内に更新が必要な方は「Cloud Practitioner」ロールにチャレンジし、12クエストをクリアした上で「AWS Cloud Quest: Recertify Cloud Practitioner (Japanese) 日本語版」の再認定課題にチャレンジしてください。

Amazon OpenSearch Serviceのバックプレッシャーとアドミッションコントロールによる回復力の向上

Amazon OpenSearch Service は、AWS クラウドで OpenSearch クラスターを大規模に安全にデプロイし運用するのを簡単にするマネージドサービスです。昨年、Shard indexing backpressure と アドミッションコントロール を導入しました。これはクラスターリソースと入力トラフィックをモニタリングして、メモリ不足などの安定性のリスクを引き起こす可能性のあるリクエストを選択的に拒否したり、メモリの競合、CPUの飽和、GC オーバーヘッドなどによるクラスター パフォーマンスへの影響を軽減します。

OpenSearch Service の Search Backpressure と CPU ベースのアドミッションコントロールをご紹介できることを嬉しく思います。これにより、クラスターの回復力がさらに向上します。これらの改善は、OpenSearch のバージョン 1.3 以降のすべてのバージョンで利用できます。

Amazon OpenSearch Service のアドミッションコントロールによる回復力の強化

OpenSearch は、リアルタイムアプリケーションモニタリング、ログ分析、ウェブサイト検索など、幅広いユースケースで使用される分散型のオープンソースの検索と分析スイートです。Amazon OpenSearch Service は、大規模な OpenSearch クラスターを安全に展開し運用することを容易にするマネージドサービスです。Amazon OpenSearch Service は、ユースケースに合わせた幅広いクラスター構成を提供します。2021 年に、自動メモリ管理の機能を Auto-Tune の下でリリースしました。Auto-Tune は、Amazon OpenSearch Service の適応型リソース管理システムで、リクエストを継続的にモニタリングし、効率とパフォーマンスを向上させるためにクラスターリソースを最適化します。

Weekly aws Japan edition

週刊AWS – 2024/1/22週

Amazon EC2 R7a, M7aの東京リージョン展開、Amazon IVS 音声コンテンツのみ料金発表、Amazon Cognito プロビジョン済みキャパシティ、EKSのKubernetes 1.27対応 ほか

AWS Glue for Apache Spark のコストのモニタリングと最適化

AWS Glue for Spark についてお客様から最もよくいただくご質問のひとつに、ワークロードのコストを効果的にモニタリングし、最適化する方法があります。AWS Glue ワークロードのコストを最適化するには、ジョブ実行をモニタリングして、実際にかかったコストと使用状況を分析し、節約できるポイントを見つけ、コードや構成の改善に向けたアクションを取ります。この投稿では、AWS Glue ワークロードの上にモニタリングと最適化技術を用いることで、コストを管理および削減するためのアプローチを紹介します。