Amazon Web Services ブログ

Category: Migration*

AWS Database Migration Service を使用した Amazon RDS for SQL Server の継続的なレプリケーションの紹介

AWS Database Migration Service (AWS DMS) とAmazon RDS for SQL Server が新たに Amazon RDS for SQL Server からの継続的なレプリケーションをサポートするという新機能を発表できることを嬉しく思います。AWS DMSは、データベースをAWSに迅速かつより安全に移行できるサービスです。また、AWS内のデータ移行にも使用できます。Oracle、Microsoft SQL Server、PostgreSQLなど、広く普及している商用およびオープンソースデータベース間でデータを移行できます。このサービスはSQL ServerからSQL Serverのような同エンジン間の移行と、SQL ServerからAmazon Aurora MySQLまたはSQL ServerからAmazon RDS for MySQLなどの異なるデータベースプラットフォーム間の移行の両方が可能です。 この記事では、Microsoft SQL Server からの継続的なレプリケーションプロセスの概要を簡単に説明します。また、MS-CDC(SQL Serverでの変更データキャプチャ)とAWS DMSを使用して、Amazon RDS for SQL Serverからの継続的な変更をストリーミングするための新機能も紹介します。   背景 AWS DMSは異なるエンジン間の移行(SQL ServerからMySQLへの移行など)用に設計されています。ただし、同エンジン間(SQL ServerからSQL Serverなど)の移行もサポートしています。これまではソースインスタンスで実際に行われていた変更にアクセスする必要がありました。 主キーを持つテーブルの場合、AWS DMSはデフォルトで以下のように使用されるように設計されています。 1.SQL Serverから進行中の変更を移行するタスクを設定すると、AWS DMSは最初に次のコマンドを使用してトランザクションレプリケーション用のデータベースを有効にします。 use master exec sp_replicationdboption […]

Read More

AWS SCT と AWS DMS を使ってMySQLから Amazon Aurora に移行する方法

MySQLは素晴らしいオープンソースデータベースエンジンで、そのコスト効率から多くの企業で使われています。しかし、その他のオープンソースデータベースと同様に、ビジネスで使えるレベルの性能を出すには多くの労力が必要です。 データベースサイズが増えるとMySQLのスケーラビリティとクラッシュリカバリの複雑さも増します。レプリケーションスレーブを追加することでMySQLデータベースをスケールさせると、特にMySQLマスターで多くの書き込みが発生した場合に、レプリケーションラグを非常にに小さな値で維持することは困難を伴います。ほとんどの場合、安定したパフォーマンスを維持することは難しいです。 一方、Amazon Aurora では最大15個のリードレプリカを追加できます。また、書き込みノードで発生した変更を再実行するために必要な従来のバイナリログ (binlog) レプリケーションのパフォーマンスをAuroraでは気にする必要がなくなります。これはAuroraクラスターボリューム内のデータは、クラスター内のライターとリーダーに対して単一の論理ボリュームとして見えるためです。 多数のテーブルを含む大規模なデータベースでの高速リカバリも Amazon Aurora の重要な利点の一つです。従来のMySQLの実装では、データベースが大きくなるにつれてリカバリ時間が長くなります。MySQLはREDOログファイルを使用するため、クラッシュするとMySQLはテーブルの検出や検証オペレーションを大量に実行します。データベースの表領域が大きいほど、リカバリに必要な時間は長くなります。この影響は MySQL 5.7 でも当てはまります。 このような要因から、MySQLから Amazon Aurora への移行に関心が集まっています。この移行を実行するにはいくつかの方法がありますが、今回は Amazon RDS for MySQL またはオンプレミスや Amazon EC2 上のMySQLから Amazon Aurora with MySQL compatibility への同種間移行について考えます。 同種間移行の方法 AWSホワイトペーパーのサイトにある Amazon Aurora Migration Handbook で同種間移行のための推奨方法がリストされています。Amazon RDS for MySQL から移行するのであれば、RDSスナップショットでの移行方法を使用できます。この方法では、RDS MySQL のDBインスタンスのスナップショットから Aurora MySQL DB クラスターを作成します。これは非常に簡単です。Amazon Aurora へニアゼロダウンタイムで移行した場合は、ソースとなる RDS MySQL DBインスタンスからAuroraリードレプリカを作ることができます。RDSが Amazon Aurora […]

Read More

ユニシスメインフレームからAWSへの5ステップでの移行

この記事はAstadia社のレガシーモダナイゼーションサービスのバイスプレジデントである Craig Marbleによるものです。 ユニシスメインフレームをお持ちの場合は、あなたはビジネスのバックボーンとして機能している信頼性の高いプラットフォームとアプリケーションポートフォリオの構築に投資していると思います。しかし、今日の技術環境は、ユニシス、メインフレームが提供できるよりも低コストで、より柔軟性と俊敏性を必要としています。 Amazon Web Services(AWS)のコンサルティングパートナーであるAstadiaでは、ユニシスメインフレームのアプリケーションワークロードを実行するための現代的で柔軟性のある選択としてAWSを利用しており、ユニシスメインフレームのアプリケーションとデータへの過去の投資を活用していることがわかりました。 慎重に計画、管理、実行すると、ユニシスメインフレームワークロードをAWSに移行することの利点は数多くあります。 Pay-as-you-goモデルのコスト削減に加えて、ユニシスメインフレームアプリケーションセットがAWSに完全に移行されると、実証済みのビジネスロジックを最新のテクノロジーと統合して、データ分析やモバイル対応を可能にし、新しい市場、顧客、パートナーにビジネスを拡大します。これを念頭に置いて、ユニシスメインフレームアプリケーションをクラウドに移行することは、贅沢と言うより必要にせまられてということのようです。 この記事では、ユニシスメインフレームアプリケーションをAWSに移行するのに役立つ5つのステップを紹介します。 元のアプリケーションのソースコードとデータを再利用し、最新のAWSサービスに移行することをお勧めします。 ユニシスメインフレームの移行を可能にするツールは、既存のコードをそのまま維持することができますが、一部のコンポーネントを置き換えてデータストレージを再考する必要があります。 このような最小限の変更のアプローチは、手作業の書き換えやパッケージの置き換えに比べてプロジェクトのコストとリスクを削減し、20年または30年の投資を活用しながら新しい市場を活用するための新技術との統合のメリットを享受します。ひとたび移行されると、アプリケーションは、既存のスタッフが現代化を進めるのに十分な特性をもつようになります。また価値ある知識野蓄積を新しいデベロッパーに伝えています。 ステップ1:ディスカバー まず、環境内のすべてのアプリケーション、言語、データベース、ネットワーク、プラットフォーム、およびプロセスをカタログ化して分析する必要があります。アプリケーション間のとすべての連携ポイントと、外部連携ポイントを文書化します。できるだけ多くの自動分析を使用し、すべてを一元的なリポジトリにまとめます。 Astadiaは、Micro Focus Enterprise Analyzerなどの商用分析ツールと独自に開発したパーサーを組み合わせて、従来のコードを迅速かつ効率的に分析します。この分析出力は、Astadia Code変換エンジンに供給される移行ルールを確立するために使用されます。これらのルールは、プロジェクト全体を通じて更新され、洗練されます。 ステップ2:デザイン すべてのソースコード、データ構造、および最終形の要件を分析した後、ソリューション設計をするときが来ました。設計には、以下の詳細を含める必要があります。 AWSインスタンスの詳細:インスタンスタイプについて言うと、汎用Tインスタンスは、開発、テスト、または統合環境に向いていますが、汎用Mインスタンスは本番環境、本番前環境、およびパフォーマンスが要求される環境に向いています。 トランザクション負荷:一般的な非機能要件ですが、1秒あたりのトランザクション数が多いなどのパフォーマンス要件、または迅速な応答時間は、メインフレームのワークロードの実行にとって重要な場合が多いです。このことはネットワーク、ストレージ、コンピューティングの設計とサイズ設定を慎重に行う必要があるということです。 バッチ要件:バッチアプリを動かすほとんどすべてのユニシスメインフレームは、通常I/O集約型で、ストレージやデータストアからのレイテンシーが非常に短い事が要求されます。これは分散システムの課題であるため、バッチインフラストラクチャは早期に設計してテストする必要があります。 プログラミング言語の変換と置換:移行対象先でサポートされていない言語や使用できない言語は、ツールで変換したり、新しい機能に置き換えることができます。 外部システムとの統合:ユニシスメインフレームは、一般的にサテライトやパートナーシステムのバックエンドまたは記録システム(SOR)であり、移行後にはプロトコル、インターフェイス、レイテンシー、帯域幅などの統合を維持する必要があります。 サードパーティのソフトウェア要件:各ISV(Independent Software Vendor)はAWS上で機能的に同等のソフトウェアを利用できる場合もあれば、そうでない場合もあるため、特定の移行パスの定義が必要です。 将来要件の計画:ビジネス、IT戦略、優先順位は、特に将来のパフォーマンスと統合機能に関わるため、アーキテクチャの決定を左右します。 ソースコードには、Sperry MAPPER、Burroughs LINC、COBOL、またはECLが含まれます。データストアには、DMS(ネットワーク接続)、DMSII(階層型)、またはRDMS(リレーショナル型)が含まれます。 このデザインがUnisys ClearPath Libraマッピングを探す方法は次のとおりです。 図2 – Unisys Libra(Burroughs)メインフレーム移行アーキテクチャのコアコンポーネントは、レガシーコードを実行するための一連のエミュレータとユーティリティを使用するメインフレームクラウドフレームワークです。   同様のマッピングは、TIP、MASM、BIS(Mapper)、ECLを含むUnisys ClearPath Doradoシステムでも実行できます。 図2のアーキテクチャのコアコンポーネントは、レガシーコードを実行するための一連のエミュレータとユーティリティを使用するメインフレームクラウドフレームワークです。 OpenMCSは、移行されたコードをサポートするUnisys COMSの必要なトランザクション処理機能を提供するAstadiaのメッセージ制御システムです。このメインフレームクラウドフレームワークは、コンピュートリソースとしてAmazon Elastic Compute Cloud(Amazon EC2)上で動作します。 ほとんどの場合、ユニシスメインフレームの階層型およびフラットファイルのデータ構造は、Amazon Relational Database Service(Amazon […]

Read More

Microsoft Azure SQL Database から Amazon Aurora への移行

Oracle や Microsoft SQL Serverなどのライセンスが必要なエンジンから、AWS上で稼働するオープンソースエンジンへ移行する気運がますます高まっています。対象データの移行先として Amazon Aurora が選ばれています。この投稿では AWS Database Migration Service (AWS DMS) を用いた Microsoft Azure SQL database から Amazon Aurora MySQL クラスタへの移行方法を紹介します。 前提条件 この記事では、Azure SQLデータベースが既にインストールされていることを前提としています。移行には、このデータベースの接続情報(DNSエンドポイント、ユーザー名、パスワードなど)が必要です。また、移行作業に使用するユーザには、Azure SQLデータベースのデータにアクセスするための適切な権限が必要です。 記事の目的に合わせ、ターゲット(移行先データベース)として Amazon Aurora クラスタを作成します。 AWS DMSはソース(移行元データベース)およびターゲットとして、様々なデータベースエンジンをサポートしていますが、多くのお客様は独自のストレージエンジンを使用したAmazon Auroraを選択します。このエンジンは、3つのアベイラビリティゾーンに跨る耐久性、自動ポイントインタイムバックアップ、最大15台の低レイテンシ読み取りレプリカを実現します。 ターゲット用の Aurora クラスタを既に作成している場合は、新規に作成する必要はありません。新しい Aurora クラスタを作成する場合は、Amazon Aurora DB クラスタ作成の手順を参照してください。 AWS DMS インフラのセットアップ ここまででソースとターゲットの情報が確認できたので、AWS DMS インフラを設定していきましょう。 AWS DMSは非常に高い柔軟性をもつ為、多くのコンポーネントから構成されています。AWS CloudFormationを使用することで、これらのコンポーネントをまとめて単一の「スタック」にグループ化し、原子性を保った1つのユニットとして何度も再作成することができます。 AWS CloudFormation のコンソールを開いて設定を始めます。 […]

Read More

Amazon RDS for PostgreSQL が新しいマイナーバージョン 9.6.6, 9.5.10, 9.4.15, 9.3.20 をサポート

PostgreSQL コミュニティによるアップデートに追従し、PostgreSQL のマイナーバージョンである 9.6.6, 9.5.10, 9.4.15, 9.3.20 が Amazon RDS for PostgreSQL でサポートされました。このリリースでは、PostgreSQLの3つのセキュリティ上の脆弱性が修正され、追加のバグ修正と改善が行われています。 このアップデートでは、Oracle Database で利用される関数、パッケージの一部を実装した Extension “orafce” と、プレフィックスマッチングを提供する Extension “prefix” のサポートがバージョン 9.6.6 に含まれています。 マネジメントコンソールを使い数クリックで新たな RDS for PostgreSQL を作成するか、既存のインスタンスをワンクリックでアップグレードすることで、新しいバージョンを利用できます。アップグレードする場合、短いダウンタイムが発生することにご注意ください。データベースインスタンスをアップグレードするにあたっての詳細は、 Amazon RDS ユーザーガイドをご覧ください。 Amazon RDS for PostgreSQL は、クラウドで簡単に PostgreSQL を設定、運用、スケール可能です。それぞれのリージョンでご利用いただけるかどうかは、Amazon RDS for PostgreSQL の料金ページをご覧ください。 翻訳は江川が担当しました。原文はこちらです。

Read More

AWS DMS と Amazon Kinesis Data Firehose を利用した Aurora PostgreSQL データベースへのストリームデータのロード

AWS Database Migration Service (AWS DMS) を利用することで、様々なデータソースから商用データベースやオープンソースデータベースへとデータを移行できます。このサービスでは、Oracle Database から Oracle Database への移行といった同一のDBMS製品間での移行をサポートしています。また、Oracle Database から Amazon Aurora, Microsoft SQL Server から MySQL へといった異なるプラットフォーム間での移行もサポートしています。さらに、ストリーミングデータを Amazon S3 から Amazon Aurora, PostgreSQL, MySQL, MariaDB, Oracle, SQL Server を含む様々な移行先へ配信することが可能です。 Amazon Kinesis Data Firehose は、AWS へストリーミングデータをロードする上で、最も簡単な方法です。ストリーミングデータのキャプチャ、変換を行い、Amazon Kinesis Data Analytics, Amazon S3, Amazon Redshift, Amazon Elasticsearch Service へロードできます。Firehose を利用することで、すでに利用しているビジネスインテリジェンスツールやダッシュボードを使い、ニアリアルタイム分析が可能となります。Firehose はお客様が送信するデータのスループットに合わせて自動的にスケールするフルマネージドサービスで、継続した運用管理を必要としません。Firehose は、ロード前にデータをまとめ、圧縮し、暗号化することで、ロード先のストレージで必要な容量を最小化したり、セキュリティを向上させたりすることができます。 AWS DMS […]

Read More

Amazon Kinesis を用いた Databaseの継続的な変更

Emmanuel Espina は、アマゾン ウェブ サービスのソフトウェア開発エンジニアです。 このブログ記事では、Amazon Kinesis を使用して変更をストリーミングすることによって、中央リレーショナルデータベース を他のシステムと統合する方法について説明します。 次の図は、分散システムにおける一般的なアーキテクチャ設計を示しています。これには、「」と呼ばれる中央ストレージと、この中央ストレージを消費するいくつかの派生「衛星」システムが含まれます。 この設計アーキテクチャを使用して、リレーショナルデータベースを中央データストアとして使用し、このシステムのトランザクション機能を利用してデータの整合性を維持することができます。このコンテキストにおける派生システムは、この変化の事実の単一ソースを観察し、それらの変更を変換し、フィルタリングし、最終的にはその内部インデックスを更新する全文検索システムとすることができます。もう 1 つの例は、OLAP クエリに適した列形式ストレージです。一般に、中央リレーショナルシステムの個々の行を変更する際にアクションを取る必要のあるシステムは、派生データストアに適した候補となります。 これらの種類のアーキテクチャの単純な実装では、変更された行を検索するために派生システムが定期的にクエリを発行し、本質的に SELECT ベースのクエリで中央データベースをポーリングします。 このアーキテクチャのより優れた実装となるのが、非同期の更新ストリームを使用するアーキテクチャです。データベースには通常、行のすべての変更が格納されるトランザクションログがあるため、この変更のストリームが外部オブザーバシステムに公開されている場合、これらのシステムにこれらのストリームを添付して行の変更を処理およびフィルタリングできます。ここでは、中央データベースとして MySQL、メッセージバスとして Amazon Kinesis を使用して、このスキーマの基本的な実装をご紹介します。 通常、MYSQL バイナリログは、マスター上のすべての変更を読み取ってローカルに適用する読取りレプリカに公開されます。この記事では、変更をローカルデータベースに適用するのではなく、Amazon Kinesis ストリームに変更を公開する、一般化されたリードレプリカを作成します。 このメソッドの重要な点の 1 つは、コンシューマーが SQL クエリを受け取らないことです。SQL クエリは公開される可能性もありますが、一般的なオブザーバーは、SQL 互換のデータレプリカを維持しない限り、SQL にはあまり関心がありません。代わりに、変更されたエンティティ (行) を 1 つずつ受け取ります。このアプローチの利点は、コンシューマーが SQL を理解する必要はなく、事実の単一ソースは誰が変更を消費するのかを知る必要はないということにあります。これは、さまざまなチームが、必要なデータ形式で調整することなく作業できることを意味します。さらに都合がいいことに、Amazon Kinesis クライアントはが特定の時点から読む機能を備えているため、各コンシューマーは独自のペースでメッセージを処理します。これが、メッセージバスがシステムを統合するための結合されていない方法の 1 つとなる理由です。 この記事で使用されている例では、行フェッチャーは中央データベースに接続する通常の Python プロセスであり、リードレプリカをシミュレートします。 データベースは、Amazon RDS または MySQL の任意のインストールのいずれかになります。RDS の場合、フェッチャープロセスは RDS インスタンスホストにカスタムソフトウェアをインストールすることができないため、別のホスト […]

Read More

大規模なデータベースをオープンソースデータベースへ移行する際のカテゴリ分けと優先度づけ

AWS Schema Conversion Tool (AWS SCT)とAWS Database Migration Service (AWS DMS) はコマーシャルデータベースからAmazon RDSの様々なデータベースエンジンへの移行を簡単に行えるようにするツールです。 AWS SCTはプロプライエタリなデータベースをオープンソースデータベースへ移行する際に手助けを行います。移行元のデータベーススキーマや多くのカスタムコードを移行先のデータベースに適した形へ変換を行います。ツールが変換を行うカスタムコードには、ビュー、ストアード・プロシージャー、ストアード・ファンクションを含みます。一方、自動的に変換が出来ないものとしては、手動で変換が行いやすいように該当箇所を抽出します。AWS DMSはダウンタイムを最小限に抑えながら、簡単・安全にデータを移行することを可能にします。 データベースエンジンを変更することは大変な作業ですが、Amazon Auroraのようなスケーラブルでコスト効率がいいフルマネージドサービスの恩恵を受けやすくなる利点があり、移行を行う価値があります。AWS SCTとAWS DMSを用いることで、単一のデータベースからオープンソースへの移行を評価し、計画を行うことが容易になります。 AWT SCTアセスメントレポートを生成し、これらのツールを使用することで、データベースを移行することが、どのくらい簡単であるかということがおわかりになると思います。 以下のブログやビデオは、オープンソースデータベースへ移行するための情報の一例です。 How to Migrate Your Oracle Database to PostgreSQL How to Migrate Your Oracle Database to Amazon Aurora Migrate from SQL Server or Oracle into Amazon Aurora using AWS DMS もし、数百・数千のデータベースを持っていた場合は 評価レポートを作成し、1つ、2つ、またはさらに10のデータベースをオープンソースデータベースへ移行することは、簡単なプロセスです。 おそらく、どのアプリケーションが利用しているデータベースを最初に移動するか判断するための材料は十分お持ちだと思います。 […]

Read More

オートメーションを活用したCloudEndureによるAWSへの容易な移行

Carmen PuccioとMandus Mombergによる記事。 CarmenとMandusは、AWSパートナーソリューションアーキテクトで、移行に注力しています。 オンプレミス環境からクラウドへのソフトウェアやサービスの移行は、独自の考慮事項と要件を伴うことは明らかです。移行結果に自信を持たせるには、容易に拡張できる移行戦略が必要です。つまり、ワークフローの大部分を自動化する必要があります。なぜクラウド内の自動化が重要であるのかに関する文書が不足しているわけではありません。この記事では、AWSアドバンスト・テクノロジーパートナーであるCloudEndureを使用して自動化された移行を実行する方法を説明し、自動化されたテストを組み込むことに重点を置いて、アプリケーションが移行後に期待どおりに動作することを確信できます。 オンプレミスからAWSへのワークロードの移行には、慎重な計画と正確な実行が必要です。クラウドに移行するにはさまざまな戦略がありますが、移行を容易にするツールも数多くあります。すべての移行ツールは、ダウンタイムとアプリケーションワークロードの影響を最小限に抑え、AWSへの移行を容易にし、データ損失を最小限に抑える、という共通の目標を持っています。 ワークロードをクラウドにすばやく移動したい場合、通常リホスト方式(リフト&シフト)に従います。リホスト実行時の課題の1つは、移行されたアプリケーションが期待どおりに実行されていることを手動で確認するのにかかる時間です。適切な移行を検証するための自動化および迅速なテストパイプラインを組み込んだ移行は、成功する可能性が高いだけでなく、反復可能なプロセスを活用し、手動検証時間を短縮することで効率を向上させます。 ソリューションの概要 このブログ記事で説明するソリューションでは、CloudEndureとAWS Database Migration Service(AWS DMS)を使用し、ソースAmazon VPCから目的のAmazon VPCへ、オンプレミスからAWSへの、Go Gitサービス(Gogs)の移行について説明します。このデモのために2つの異なるVPCを使用していますが、このブログポストで使用しているツールの自動化と組合せによって、オンプレミスからAWSへの移行を容易に実現することができます。CentOS 7が稼働するモックソース環境の設定では、AWS CloudFormationとAnsibleの組合せを選択しましたので、あなたのテスト用AWS環境でご確認することができます。 CloudEndureはアプリケーションサーバの移行を担当し、AWS DMSはEC2インスタンス上で実行されているMySQLサーバからGogs DBを、完全に管理されたAmazon RDSデータベースに再構築する役目を負います。このデモンストレーションのためDMSを活用し、RDSへのデータベースのレプリケート方法を示しました。もう1つの選択肢として、データベース移行において、CloudEndureによるEC2へのリホストを行うことができます。 CloudEndureは起動時に、移行後のインスタンスでカスタム後処理スクリプトを呼び出す機能があります。この機能を使用すると、カスタム構成を実行し、自動化された承認テストを実行して、移行されたサーバでアプリケーションが正常に動作していることを確認できます。 移行の信頼性のため、AWS Lambda、AWS SNS、AWS SQS、CloudEndureの後処理機能を活用して、一連のテストを実行するための自動テストパイプラインを構築しています。すべてのテストが正常に完了すると、ソース環境から構築されたイメージを使用して高可用性Gogs環境をデプロイするAWS CloudFormationテンプレートが自動的に起動されます。 次の図は、この記事で取り上げる移行プロセスを示しています。 プロセスの仕組みは次のとおりです。 Ansibleは、AWS Application Discovery Service、CloudEndureエージェント、およびGogsソースサーバの再設定およびテストに使用されるスクリプトをインストールします。 AWS DMSは、GogsソースDBサーバを宛先RDSインスタンスに移行します。 CloudEndureエージェントが実行されると、ブロックレベルのコピーが開始され、GogsソースサーバとAWSの初期同期が実行されます。 CloudEndureが初期同期を完了すると、Continuous Data Protection(CDP)エンジンは新しいデータのリアルタイム同期を開始し、サーバはAWSでのテスト準備完了としてマークされます。 CloudEndure.pyスクリプトはconfig.ymlファイルのhosttomigrate変数に基づいて移行を開始します。 (この変数は、CloudEndureダッシュボードにインスタンス名として表示されます)。 CloudEndure.pyスクリプトはCloudEndure APIを呼び出し、ソースインスタンスの最新のスナップショットからテストインスタンスを開始します。 CloudEndureは、最新のスナップショットから宛先に新しいインスタンスを起動し、CloudEndure.shポストプロビジョニングスクリプトを実行します。このスクリプトは次の処理を行います。 DMSが複製しているRDSインスタンスを指すようにGogsを再構成し、Gogsサービスを再起動します。 Gogsサービスが稼動しているかどうかを確認します。稼働している場合、CloudEndure.shポストプロビジョニングスクリプトはCloudEndure_PostProcessing.pyスクリプトを呼び出します。このスクリプトはCloudEndure Pass / Fail SNSトピックに成功通知を送信します。メッセージの例は次のようになります。 “Message”: “{“instanceId”: ” i-0bb669daff4b1eea1″,”Pass”: […]

Read More

オンプレミスや Amazon EC2 上の Oracle Database を Amazon Redshift に移行

AWS Database Migration Service (AWS DMS) は、簡単かつ安全なAWSへのデータベース移行の手助けをします。AWS Database Migration Service は広く使われている商用データベースとオープンソースデータベースに対応しています。このサービスはOracleからOracleのような同一プラットフォームでの移行に対応していますし、Oracleから Amazon Aurora や、Microsoft SQL Server からMySQLのような異なるプラットフォーム間での移行にも対応しています。移行元のデータベースは移行中も完全に動作しつづけたままであり、データベースに依存するアプリケーションのダウンタイムを最小限に抑えます。 AWS Database Migration Service を使用したデータレプリケーションは、AWS Schema Conversion Tool (AWS SCT) と緊密に統合されており、異なるプラットフォーム間でのデータベース移行プロジェクトを簡略化します。異なるプラットフォーム間での移行には AWS SCT を使用できますし、同一プラットフォームであれば移行元エンジンの純正スキーマ出力ツールが使えます。 この投稿では、Oracle Database のデータウェアハウスから Amazon Redshift へのデータ移行にフォーカスします。 以前の AWS SCT では、Oracle Database のビューやファンクションなどのカスタムコードを Amazon Redshift と互換性のあるフォーマットに変換できませんでした。ビューとファンクションを変換するには、最初に Oracle Database スキーマをPostgreSQLに変換し、それから Amazon Redshift と互換性のあるビューとファンクションを抽出するスクリプトを実行する必要がありました。 お客様のフィードバックに基づいたアップデートの後、AWS SCT と […]

Read More