AWS Machine Learning Blog

Category: Amazon SageMaker

Automated model refresh with streaming data

In today’s world, being able to quickly bring on-premises machine learning (ML) models to the cloud is an integral part of any cloud migration journey. This post provides a step-by-step guide for launching a solution that facilitates the migration journey for large-scale ML workflows. This solution was developed by the Amazon ML Solutions Lab for […]

Read More

Performing simulations at scale with Amazon SageMaker Processing and R on RStudio

Statistical analysis and simulation are prevalent techniques employed in various fields, such as healthcare, life science, and financial services. The open-source statistical language R and its rich ecosystem with more than 16,000 packages has been a top choice for statisticians, quant analysts, data scientists, and machine learning (ML) engineers. RStudio is an integrated development environment […]

Read More

Introducing AWS Panorama – Improve your operations with computer vision at the edge

Yesterday at AWS re:Invent 2020, we announced AWS Panorama, a new machine learning (ML) Appliance and SDK, which allows organizations to bring computer vision (CV) to their on-premises cameras to make automated predictions with high accuracy and low latency. In this post, you learn how customers across a range of industries are using AWS Panorama […]

Read More

Introducing the AWS Panorama Device SDK: Scaling computer vision at the edge with AWS Panorama-enabled devices

Yesterday, at AWS re:Invent, we announced AWS Panorama, a new Appliance and Device SDK that allows organizations to bring computer vision to their on-premises cameras to make automated predictions with high accuracy and low latency. With AWS Panorama, companies can use compute power at the edge (without requiring video streamed to the cloud) to improve […]

Read More

Configuring autoscaling inference endpoints in Amazon SageMaker

Amazon SageMaker is a fully managed service that provides every developer and data scientist with the ability to quickly build, train, and deploy machine learning (ML) models at scale. Amazon SageMaker removes the heavy lifting from each step of the ML process to make it easier to develop high-quality models. You can one-click deploy your […]

Read More

Private package installation in Amazon SageMaker running in internet-free mode

Amazon SageMaker Studio notebooks and Amazon SageMaker notebook instances are internet-enabled by default. However, many regulated industries, such as financial industries, healthcare, telecommunications, and others, require that network traffic traverses their own Amazon Virtual Private Cloud (Amazon VPC) to restrict and control which traffic can go through public internet. Although you can disable direct internet […]

Read More

Securing data analytics with an Amazon SageMaker notebook instance and Kerberized Amazon EMR cluster

Ever since Amazon SageMaker was introduced at AWS re:Invent 2017, customers have used the service to quickly and easily build and train machine learning (ML) models and directly deploy them into a production-ready hosted environment. SageMaker notebook instances provide a powerful, integrated Jupyter notebook interface for easy access to data sources for exploration and analysis. […]

Read More

Analyzing data stored in Amazon DocumentDB (with MongoDB compatibility) using Amazon Sagemaker

One of the challenges in data science is getting access to operational or real-time data, which is often stored in operational database systems. Being able to connect data science tools to operational data easily and efficiently unleashes enormous potential for gaining insights from real-time data. In this post, we explore using Amazon SageMaker to analyze […]

Read More

Creating Amazon SageMaker Studio domains and user profiles using AWS CloudFormation

Amazon SageMaker Studio is the first fully integrated development environment (IDE) for machine learning (ML). It provides a single, web-based visual interface where you can perform all ML development steps required to build, train, tune, debug, deploy, and monitor models. In this post, we demonstrate how you can create a SageMaker Studio domain and user […]

Read More

Bringing your own R environment to Amazon SageMaker Studio

Amazon SageMaker Studio is the first fully integrated development environment (IDE) for machine learning (ML). With a single click, data scientists and developers can quickly spin up SageMaker Studio notebooks to explore datasets and build models. On October 27, 2020, Amazon released a custom images feature that allows you to launch SageMaker Studio notebooks with […]

Read More