AWS Partner Network (APN) Blog

Category: Amazon Machine Learning

Infosys-APN-Blog-042022

Delivering Closed Loop Assurance with Infosys Digital Operations Ecosystem Platform on AWS

A closed loop assurance system predicts network events, such as faults and congestions, that are highly probable of causing service degradation or interruption, and automatically take preventive actions to avert service disruptions. Learn how Infosys leveraged AWS data streaming, data analytics, and machine learning services to ingest, process, and analyze high volumes of data from disparate sources; and to build ML models to predict network events that cause service degradation.

Read More
Provectus-APN-Blog-041322

Machine Learning Infrastructure for Commercial Real Estate Insights Platform

Learn now Provectus looked into how machine learning models were prototyped and evaluated at VTS, and then delivered a template-based solution enabling their data scientists to more easily create Amazon SageMaker jobs, pipelines, endpoints, and other AWS resources. The resulting coherent set of templates, with usage cookbook and extension guidelines, was applied successfully on an ML model that predicted leasing outcomes.

Read More
Snowflake-APN-Blog-032122-1

Using Amazon Comprehend Medical with the Snowflake Data Cloud

Healthcare customers use Snowflake to store all types of clinical data in a single source of truth. One method for gaining insights from this data is to use Amazon Comprehend Medical, which is a HIPAA-eligible natural language processing service that uses machine learning to extract health data from medical text. Learn how the Snowflake Data Cloud allows healthcare and life sciences organizations to centralize data in a single and secure location.

Read More
APN-Blog-SaaS-Multi-Tenant-MLaaS-031022

Implementing a Multi-Tenant MLaaS Build Environment with Amazon SageMaker Pipelines

Organizations hosting customer-specific machine learning models on AWS have unique isolation and performance requirements and require a solution that provides a scalable, high-performance, and feature-rich ML platform. Learn how Amazon SageMaker Pipelines helps you to pre-process data, build, train, tune, and register ML models in SaaS applications. We’ll focus on best practices for building tenant-specific ML models with particular focus on tenant isolation and cost attribution.

Read More

View Amazon HealthLake FHIR Data Using Clarity by Cognosante

Healthcare customers are adopting fast healthcare interoperability resources (FHIR) as a way to exchange healthcare information in a secure and compliant manner. Aligning on a common data model streamlines healthcare application development and the adoption of machine learning. Learn how to visualize and navigate FHIR data on AWS by using eSante Clarity, Cognosante’s FHIR viewer. Clarity can access FHIR data on AWS and navigate the clinical dataset within.

Read More
Capgemini-AWS-Partners-2

Automating Signature Recognition Using Capgemini MLOps Pipeline on AWS

Recognizing a user’s signature is an essential step in banking and legal transactions, and typically involves relying on human verification. Learn how Capgemini uses machine learning from AWS to build ML-models to verify signatures from different user channels including web and mobile apps. This ensures organizations can meet the required standards, recognize user identity, and assess if further verifications are needed.

Read More
Deloitte-AWS-Partners-1

How Deloitte is Improving Animal Welfare with AI at the Edge Using AWS Panorama

The continuous interaction between humans and animals in slaughterhouses can lead to animal welfare deviations which can occur in different forms. Learn how Deloitte’s AI4Animals solution is capable of detecting these welfare deviations in order to improve the conditions of animals in slaughterhouses. This is accomplished by using AWS Panorama, a machine learning appliance and software developer kit (SDK) that allows organizations to bring computer vision to their on-premises cameras.

Read More
Accenture-AWS-Partners-1

Accelerate Your Life Sciences Data Journey with Accenture Intelligent Data Foundation on AWS

Increasing penetration of analytics in the life sciences industry is expected to drive significant growth for businesses in the coming years. Learn about Accenture’s life sciences data and analytics accelerator which enables customers to respond to these challenges and use data for their competitive advantage. Particular focus is given to the commercial domain and use of analytics to increase customer engagement and optimize sales and marketing.

Read More
D2iQ-AWS-Partners-1

Managing Machine Learning Workloads Using Kubeflow on AWS with D2iQ Kaptain

Kubernetes is hardware-agnostic and can work across a wide range of infrastructure platforms, and Kubeflow—the self-described machine learning toolkit for Kubernetes—provides a Kubernetes-native platform for developing and deploying ML systems. Learn how D2iQ Kaptain on AWS directly addresses the challenges of moving ML workloads into production, the steep learning curve for Kubernetes, and the particular difficulties Kubeflow can introduce.

Read More
IDP-Public-Sector-reInvent-2021-2

Enabling Digital Automation in Intelligent Document Processing (IDP) for Public Sector Partners and Customers Using AWS AI

Learn about the AWS AI services stack for government agencies and partners to develop intelligent automation solutions to extract information from digitalized paper documents. Intelligent Document Processing (IDP) is a solution that enables extraction and processing of specific data elements from documents using AI and machine learning techniques. AWS services that add AI/ML intelligence to IDP solutions include Amazon Textract, Amazon Comprehend, Amazon Augmented AI, and Amazon Kendra.

Read More