AWS Partner Network (APN) Blog

Category: Amazon Machine Learning

Capgemini-APN-Blog-092122

Capgemini’s Edge-Capable Targeted Campaigns for Popup Stores Using Deep Learning

As direct to customer (D2C) gains popularity among retailers, there’s an increasing need to mix online and offline experiences to improve customer engagements and sentiment. One such popular channel is popup stores. This post explores a Capgemini solution that uses Amazon Web Services (AWS) to help retailers engage with customers in a smart way. The solution leverages deep learning to enhance the customer experience through gamification and provides key insights and marketing leads to retailers.

Read More
ClearScale-APN-Blog-080222

PBS Provides Tailored Experiences for Viewers with Amazon Personalize

Like many of today’s leading media and streaming platforms, PBS wanted to take its overall user experience to the next level. That’s why PBS approached AWS Premier Tier Consulting Partner ClearScale, a leader in machine learning. ClearScale came up with a detailed roadmap for tackling PBS’s recommendation system project that included data operations, MLOps, and demonstrational user interface. Together, PBS and ClearScale decided to move forward with an AWS-powered solution on top of Amazon Personalize.

Read More
OctoML-APN-Blog-071922

Deploy Accelerated ML Models to Amazon Elastic Kubernetes Service Using OctoML CLI

Deploying machine learning (ML) models as a packaged container with hardware-optimized acceleration, without compromising accuracy and while being financially feasible, can be challenging. As machine learning models become the brains of modern applications, developers need a simpler way to deploy trained ML models to live endpoints for inference. This post explores how a ML engineer can take a trained model, optimize and containerize the model using OctoML CLI, and deploy it to Amazon EKS.

Read More
Gartner-AWS-CAIDS-2022-thumbnail

AWS Named a Leader in 2022 Gartner Magic Quadrant for Cloud AI Developer Services

Industry analyst firm Gartner has published its annual report evaluating cloud AI developer services, the 2022 Magic Quadrant for Cloud AI Developer Services (CAIDS). AWS was once again named a Leader and placed highest among 13 recognized vendors for “Ability to Execute.” Choosing the right provider for cloud AI developer services is critically important right now. AWS Partners can leverage this report with their customers to showcase the value that AWS will bring to them.

Read More
Infosys-APN-Blog-042022

Delivering Closed Loop Assurance with Infosys Digital Operations Ecosystem Platform on AWS

A closed loop assurance system predicts network events, such as faults and congestions, that are highly probable of causing service degradation or interruption, and automatically take preventive actions to avert service disruptions. Learn how Infosys leveraged AWS data streaming, data analytics, and machine learning services to ingest, process, and analyze high volumes of data from disparate sources; and to build ML models to predict network events that cause service degradation.

Read More
Provectus-APN-Blog-041322

Machine Learning Infrastructure for Commercial Real Estate Insights Platform

Learn now Provectus looked into how machine learning models were prototyped and evaluated at VTS, and then delivered a template-based solution enabling their data scientists to more easily create Amazon SageMaker jobs, pipelines, endpoints, and other AWS resources. The resulting coherent set of templates, with usage cookbook and extension guidelines, was applied successfully on an ML model that predicted leasing outcomes.

Read More
Snowflake-APN-Blog-032122-1

Using Amazon Comprehend Medical with the Snowflake Data Cloud

Healthcare customers use Snowflake to store all types of clinical data in a single source of truth. One method for gaining insights from this data is to use Amazon Comprehend Medical, which is a HIPAA-eligible natural language processing service that uses machine learning to extract health data from medical text. Learn how the Snowflake Data Cloud allows healthcare and life sciences organizations to centralize data in a single and secure location.

Read More
APN-Blog-SaaS-Multi-Tenant-MLaaS-031022

Implementing a Multi-Tenant MLaaS Build Environment with Amazon SageMaker Pipelines

Organizations hosting customer-specific machine learning models on AWS have unique isolation and performance requirements and require a solution that provides a scalable, high-performance, and feature-rich ML platform. Learn how Amazon SageMaker Pipelines helps you to pre-process data, build, train, tune, and register ML models in SaaS applications. We’ll focus on best practices for building tenant-specific ML models with particular focus on tenant isolation and cost attribution.

Read More

View Amazon HealthLake FHIR Data Using Clarity by Cognosante

Healthcare customers are adopting fast healthcare interoperability resources (FHIR) as a way to exchange healthcare information in a secure and compliant manner. Aligning on a common data model streamlines healthcare application development and the adoption of machine learning. Learn how to visualize and navigate FHIR data on AWS by using eSante Clarity, Cognosante’s FHIR viewer. Clarity can access FHIR data on AWS and navigate the clinical dataset within.

Read More
Capgemini-AWS-Partners-2

Automating Signature Recognition Using Capgemini MLOps Pipeline on AWS

Recognizing a user’s signature is an essential step in banking and legal transactions, and typically involves relying on human verification. Learn how Capgemini uses machine learning from AWS to build ML-models to verify signatures from different user channels including web and mobile apps. This ensures organizations can meet the required standards, recognize user identity, and assess if further verifications are needed.

Read More