AWS Partner Network (APN) Blog

Category: Artificial Intelligence

AWS Machine Learning Competency Expands to Include Applied AI and MLOps Partners

Artificial intelligence (AI) and machine learning (ML) are maturing rapidly. According to Gartner, 75% of enterprises will shift from piloting to operationalizing AI by 2024. That’s why we are expanding the AWS Machine Learning Competency to help customers identify and engage qualified AWS Partners that have deep technical expertise and proven customer success in the areas of Applied AI and Machine Learning Operations (MLOps).

TensorIoT-AWS-Partners-1

SafetyVisor: Protecting Against COVID-19 with Computer Vision and AWS

To help safeguard workplaces from the pandemic, TensorIoT developed SafetyVisor, a suite of machine learning tools that can operate independently or in tandem with existing business infrastructure to monitor safety gear usage (like masks) and social distancing. SafetyVisor’s computer vision models are designed to work with your existing cameras, and the entire solution is built utilizing a flexible architecture to facilitate easy deployment and use.

DXC-AWS-Partners-3

CoDetect: A Serverless AI-Powered Web App for Detecting Medical Conditions in CT Scans

DXC Technology created a serverless artificial intelligence-powered solution called CoDetect to help detect manifestations of COVID-19 (and other medical conditions) in CT scans. Learn about the AWS services DXC chose for this solution, and explore two functional use cases that demonstrate the benefits of DXC’s CoDetect design and implementation approach. CoDetect is a web-based app that allows end users to submit CT scan studies for an AI model analysis.

Bursting Your On-Premises Data Lake Analytics and AI Workloads on AWS

Developing and maintaining an on-premises data lake is a complex undertaking. To maximize the value of data and use it as the basis for critical decisions, the data platform must be flexible and cost-effective. Learn how to build a hybrid data lake with Alluxio to leverage analytics and AI on AWS alongside a multi-petabyte on-premises data lake. Alluxio’s solution is called “zero-copy” hybrid cloud, indicating a cloud migration approach without first copying data to Amazon S3.

Onica-AWS-Partners-2

How Onica Leverages AWS AI, ML, and IoT Services to Combat the Pandemic

Many organizations have started applying machine learning and artificial intelligence expertise to scale customer communications and accelerate research during the COVID-19 pandemic. Onica has been actively involved in these efforts, leveraging AWS technologies to help decision makers navigate this pandemic. In this post, dive into the technical details of two COVID-19-related solutions Onica has produced and learn about their results and impact.

How Pr3vent Uses Machine Learning on AWS to Combat Preventable Vision Loss in Infants

Scaling doctors’ expertise through artificial intelligence (AI) and machine learning (ML) provides an affordable and accurate solution, giving millions of infants equal access to eye screening. Learn how Pr3vent, a medical AI company founded by ophthalmologists, teamed up with AWS Machine Learning Competency Partner Provectus to develop an advanced disease screening solution powered by deep learning that detects pathology and signs of possible abnormalities in the retinas of newborns.

Capgemini-AWS-Partners

How Capgemini Simplifies Pandemic Management with AWS Machine Learning Services

In a global pandemic, it can be hard for medical practitioners and patients to get connected and treated. Continually being on top of patients’ progress is also a challenge, along with scarcity of doctors who themselves are affected by the pandemic. Learn about a reference architecture from Capgemini that uses AWS machine learning services to enable doctors and patients to interact with the least amount of physical contact, while also improving efficiency in treatment management, tracking, and auditing.

How to Build and Deploy Amazon SageMaker Models in Dataiku Collaboratively

Organizations often need business analysts and citizen data scientists to work with data scientists to create machine learning (ML) models, but they struggle to provide a common ground for collaboration. Newly enriched Dataiku Data Science Studio (DSS) and Amazon SageMaker capabilities answer this need, empowering a broader set of users by leveraging the managed infrastructure of Amazon SageMaker and combining it with Dataiku’s visual interface to develop models at scale.

Solutions-Architecture-1

Intelligent Video Analytics and Effective Remote Learning on Campus Private 4G/5G Networks

Edge computing is a new paradigm in which the resources of a small data center are placed at the edge of the internet, in close proximity to mobile devices, sensors, and end users. Learn about the Physical Distancing Video Analytics Solution (VAS) on campus private 4G/5G networks that was developed utilizing AWS edge services in partnership with Carnegie Mellon University’s Open Edge Computing Initiative, Megh Computing’s Video Analytics Solution, and Federated Wireless Private Network Connectivity as a Service.

How to Export a Model from Domino for Deployment in Amazon SageMaker

Data science is driving significant value for many organizations, including fueling new revenue streams, improving longstanding processes, and optimizing customer experience. Domino Data Lab empowers code-first data science teams to overcome these challenges of building and deploying data science at scale. Learn how to build and export a model from the Domino platform for deployment in Amazon SageMaker. Deploying models within Domino provides insight into the full model lineage.