AWS Architecture Blog

Category: Automotive

Field Notes: Deploy and Visualize ROS Bag Data on AWS using rviz and Webviz for Autonomous Driving

In the automotive industry, ROS bag files are frequently used to capture drive data from test vehicles configured with cameras, LIDAR, GPS, and other input devices. The data for each device is stored as a topic in the ROS bag file. Developers and engineers need to visualize and inspect the contents of ROS bag files to identify […]

Read More
reference architecture - build automated scene detection pipeline - Autonomous Driving

Field Notes: Building an automated scene detection pipeline for Autonomous Driving – ADAS Workflow

This Field Notes blog post in 2020 explains how to build an Autonomous Driving Data Lake using this Reference Architecture. Many organizations face the challenge of ingesting, transforming, labeling, and cataloging massive amounts of data to develop automated driving systems. In this re:Invent session, we explored an architecture to solve this problem using Amazon EMR, Amazon […]

Read More
Deploying Autonomous Driving & ADAS workloads at scale

Field Notes: Deploying Autonomous Driving and ADAS Workloads at Scale with Amazon Managed Workflows for Apache Airflow

Cloud Architects developing autonomous driving and ADAS workflows are challenged by loosely distributed process steps along the tool chain in hybrid environments. This is accelerated by the need to create a holistic view of all running pipelines and jobs. Common challenges include: finding and getting access to the data sources specific to your use case, […]

Read More
Figure 1 - Architecture Showing how to build an automated Image Processing and Model Training pipeline

Field Notes: Building an Automated Image Processing and Model Training Pipeline for Autonomous Driving

In this blog post, we demonstrate how to build an automated and scalable data pipeline for autonomous driving. This solution was built with the goal of accelerating the process of analyzing recorded footage and training a model to improve the experience of autonomous driving. We will demonstrate the extraction of images from ROS bag file […]

Read More
Figure 1 - Architecture for Automating Data Ingestion and Labeling for Autonomous Vehicle Development

Field Notes: Automating Data Ingestion and Labeling for Autonomous Vehicle Development

This post was co-written by Amr Ragab, AWS Sr. Solutions Architect, EC2 Engineering and Anant Nawalgaria, former AWS Professional Services EMEA. One of the most common needs we have heard from customers in Autonomous Vehicle (AV) development, is to launch a hybrid deployment environment at scale. As vehicle fleets are deployed across the globe, they […]

Read More

Field Notes: Building an Autonomous Driving and ADAS Data Lake on AWS

September 8, 2021: Amazon Elasticsearch Service has been renamed to Amazon OpenSearch Service. See details. Customers developing self-driving car technology are continuously challenged by the amount of data captured and created during the development lifecycle. This is accelerated by the need to design and launch incremental feature improvements on advanced driver-assistance systems (ADAS). Efforts to […]

Read More
Figure 3 : Reference Architecture for Hardware-in-the-Loop (HiL) Direct to Amazon S3

Field Notes: Implementing Hardware-in-the-Loop for Autonomous Driving Development on AWS

September 8, 2021: Amazon Elasticsearch Service has been renamed to Amazon OpenSearch Service. See details. Automotive customers use AWS as their platform for advanced driving assistance systems (ADAS) and autonomous driving (AD) development to accelerate their development cycles and experience faster time-to-market. In the blog post, Autonomous Vehicle and ADAS development on AWS Part 1: […]

Read More

Field Notes: Powering the Connected Vehicle with Amazon Alexa

Alexa has improved the in-home experience and has potential to greatly enhance the in-car experience. This blog is a continuation of my previous blog: Field Notes: Implementing a Digital Shadow of a Connected Vehicle with AWS IoT. Multiple OEMs (Original Equipment Manufacturers) have showcased this capability during CES 2020. Use cases include; a person seating at […]

Read More
virtual vehicle model

Field Notes: Implementing a Digital Shadow of a Connected Vehicle with AWS IoT

Innovations in connected vehicle technology are expected to improve the quality and speed of vehicle communications and create a safer driving experience. As connected vehicles are becoming part of the mainstream, OEMs (Original Equipment Manufacturers) are broadening the capabilities of their products and dramatically improving the in-vehicle experience for customers. An important feature in a […]

Read More
Video Redaction

Field Notes: Redacting Personal Data from Connected Cars Using Amazon Rekognition

Cameras mounted in connected cars may collect a variety of video data. Organizations may need to redact the personal information (e.g. human faces and automobile license plates) contained in the collected video data in order to protect individuals’ privacy rights and, where required, meet compliance obligations under privacy regulations such as General Data Protection Regulation […]

Read More