AWS Big Data Blog

Category: Advanced (300)

How Skroutz handles real-time schema evolution in Amazon Redshift with Debezium

Skroutz chose Amazon Redshift to promote data democratization, empowering teams across the organization with seamless access to data, enabling faster insights and more informed decision-making. In this post, we share how we handled real-time schema evolution in Amazon Redshift with Debezium.

How Nexthink built real-time alerts with Amazon Managed Service for Apache Flink

In this post, we describe Nexthink’s journey as they implemented a new real-time alerting system using Amazon Managed Service for Apache Flink. We explore the architecture, the rationale behind key technology choices, and the Amazon Web Services (AWS) services that enabled a scalable and efficient solution.

Using AWS Glue Data Catalog views with Apache Spark in EMR Serverless and Glue 5.0

In this post, we guide you through the process of creating a Data Catalog view using EMR Serverless, adding the SQL dialect to the view for Athena, sharing it with another account using LF-Tags, and then querying the view in the recipient account using a separate EMR Serverless workspace and AWS Glue 5.0 Spark job and Athena. This demonstration showcases the versatility and cross-account capabilities of Data Catalog views and access through various AWS analytics services.

Architecture patterns to optimize Amazon Redshift performance at scale

In this post, we will show you five Amazon Redshift architecture patterns that you can consider to optimize your Amazon Redshift data warehouse performance at scale using features such as Amazon Redshift Serverless, Amazon Redshift data sharing, Amazon Redshift Spectrum, zero-ETL integrations, and Amazon Redshift streaming ingestion.

Configure cross-account access of Amazon SageMaker Lakehouse multi-catalog tables using AWS Glue 5.0 Spark

In this post, we show you how to share an Amazon Redshift table and Amazon S3 based Iceberg table from the account that owns the data to another account that consumes the data. In the recipient account, we run a join query on the shared data lake and data warehouse tables using Spark in AWS Glue 5.0. We walk you through the complete cross-account setup and provide the Spark configuration in a Python notebook.

Melting the ice — How Natural Intelligence simplified a data lake migration to Apache Iceberg

Natural Intelligence (NI) is a world leader in multi-category marketplaces. In this blog post, NI shares their journey, the innovative solutions developed, and the key takeaways that can guide other organizations considering a similar path. This article details NI’s practical approach to this complex migration, focusing less on Apache Iceberg’s technical specifications, but rather on the real-world challenges and solutions encountered during the transition to Apache Iceberg, a challenge that many organizations are grappling with.

Optimize multimodal search using the TwelveLabs Embed API and Amazon OpenSearch Service

In this blog post, we show you the process of integrating TwelveLabs Embed API with OpenSearch Service to create a multimodal search solution. You’ll learn how to generate rich, contextual embeddings from video content and use OpenSearch Service’s vector database capabilities to enable search functionalities. By the end of this post, you’ll be equipped with the knowledge to implement a system that can transform the way your organization handles and extracts value from video content.

Build a data lakehouse in a hybrid Environment using Amazon EMR Serverless, Apache DolphinScheduler, and TiDB

This post discusses a decoupled approach of building a serverless data lakehouse using AWS Cloud-centered services, including Amazon EMR Serverless, Amazon Athena, Amazon Simple Storage Service (Amazon S3), Apache DolphinScheduler (an open source data job scheduler) as well as PingCAP TiDB, a third-party data warehouse product that can be deployed either on premises or on the cloud or through a software as a service (SaaS).