AWS Machine Learning Blog

Category: Artificial Intelligence

Interpret caller input using grammar slot types in Amazon Lex

Customer service calls require customer agents to have the customer’s account information to process the caller’s request. For example, to provide a status on an insurance claim, the support agent needs policy holder information such as the policy ID and claim number. Such information is often collected in the interactive voice response (IVR) flow at […]

Whitepaper: Machine Learning Best Practices in Healthcare and Life Sciences

For customers looking to implement a GxP-compliant environment on AWS for artificial intelligence (AI) and machine learning (ML) systems, we have released a new whitepaper: Machine Learning Best Practices in Healthcare and Life Sciences. This whitepaper provides an overview of security and good ML compliance practices and guidance on building GxP-regulated AI/ML systems using AWS […]

Prepare data from Databricks for machine learning using Amazon SageMaker Data Wrangler

Data science and data engineering teams spend a significant portion of their time in the data preparation phase of a machine learning (ML) lifecycle performing data selection, cleaning, and transformation steps. It’s a necessary and important step of any ML workflow in order to generate meaningful insights and predictions, because bad or low-quality data greatly […]

Personalize cross-channel customer experiences with Amazon SageMaker, Amazon Personalize, and Twilio Segment

Today, customers interact with brands over an increasingly large digital and offline footprint, generating a wealth of interaction data known as behavioral data. As a result, marketers and customer experience teams must work with multiple overlapping tools to engage and target those customers across touchpoints. This increases complexity, creates multiple views of each customer, and […]

Automated, scalable, and cost-effective ML on AWS: Detecting invasive Australian tree ferns in Hawaiian forests

This is blog post is co-written by Theresa Cabrera Menard, an Applied Scientist/Geographic Information Systems Specialist at The Nature Conservancy (TNC) in Hawaii. In recent years, Amazon and AWS have developed a series of sustainability initiatives with the overall goal of helping preserve the natural environment. As part of these efforts, AWS Professional Services establishes […]

Automatically generate model evaluation metrics using SageMaker Autopilot Model Quality Reports

Amazon SageMaker Autopilot helps you complete an end-to-end machine learning (ML) workflow by automating the steps of feature engineering, training, tuning, and deploying an ML model for inference. You provide SageMaker Autopilot with a tabular data set and a target attribute to predict. Then, SageMaker Autopilot automatically explores your data, trains, tunes, ranks and finds […]

SageMaker Data Wrangler Risk Modeling

Build a mental health machine learning risk model using Amazon SageMaker Data Wrangler

This post is co-written by Shibangi Saha, Data Scientist, and Graciela Kravtzov, Co-Founder and CTO, of Equilibrium Point. Many individuals are experiencing new symptoms of mental illness, such as stress, anxiety, depression, substance use, and post-traumatic stress disorder (PTSD). According to Kaiser Family Foundation, about half of adults (47%) nationwide have reported negative mental health […]

Improve search accuracy with Spell Checker in Amazon Kendra

Amazon Kendra is an intelligent search service powered by machine learning. You can receive spelling suggestions for misspelled terms in your queries by utilizing the Amazon Kendra Spell Checker. Spell Checker helps reduce the frequency of queries returning irrelevant results by providing spelling suggestions for unrecognized terms. In this post, we explore how to use […]

Set up a text summarization project with Hugging Face Transformers: Part 1

When OpenAI released the third generation of their machine learning (ML) model that specializes in text generation in July 2020, I knew something was different. This model struck a nerve like no one that came before it. Suddenly I heard friends and colleagues, who might be interested in technology but usually don’t care much about […]