Artificial Intelligence
Category: Amazon SageMaker
Optimize your machine learning deployments with auto scaling on Amazon SageMaker
Machine learning (ML) has become ubiquitous. Our customers are employing ML in every aspect of their business, including the products and services they build, and for drawing insights about their customers. To build an ML-based application, you have to first build the ML model that serves your business requirement. Building ML models involves preparing the […]
Share medical image research on Amazon SageMaker Studio Lab for free
This post is co-written with Stephen Aylward, Matt McCormick, Brianna Major from Kitware and Justin Kirby from the Frederick National Laboratory for Cancer Research (FNLCR). Amazon SageMaker Studio Lab provides no-cost access to a machine learning (ML) development environment to everyone with an email address. Like the fully featured Amazon SageMaker Studio, Studio Lab allows […]
Amazon SageMaker Automatic Model Tuning now supports three new completion criteria for hyperparameter optimization
Amazon SageMaker has announced the support of three new completion criteria for Amazon SageMaker automatic model tuning, providing you with an additional set of levers to control the stopping criteria of the tuning job when finding the best hyperparameter configuration for your model. In this post, we discuss these new completion criteria, when to use them, and […]
Image classification model selection using Amazon SageMaker JumpStart
Researchers continue to develop new model architectures for common machine learning (ML) tasks. One such task is image classification, where images are accepted as input and the model attempts to classify the image as a whole with object label outputs. With many models available today that perform this image classification task, an ML practitioner may […]
Predict football punt and kickoff return yards with fat-tailed distribution using GluonTS
Today, the NFL is continuing their journey to increase the number of statistics provided by the Next Gen Stats Platform to all 32 teams and fans alike. With advanced analytics derived from machine learning (ML), the NFL is creating new ways to quantify football, and to provide fans with the tools needed to increase their […]
Analyze and visualize multi-camera events using Amazon SageMaker Studio Lab
The National Football League (NFL) is one of the most popular sports leagues in the United States and is the most valuable sports league in the world. The NFL, BioCore, and AWS are committed to advancing human understanding around the diagnosis, prevention, and treatment of sports-related injuries to make the game of football safer. More […]
Amazon SageMaker built-in LightGBM now offers distributed training using Dask
Amazon SageMaker provides a suite of built-in algorithms, pre-trained models, and pre-built solution templates to help data scientists and machine learning (ML) practitioners get started on training and deploying ML models quickly. You can use these algorithms and models for both supervised and unsupervised learning. They can process various types of input data, including tabular, […]
Best Egg achieved three times faster ML model training with Amazon SageMaker Automatic Model Tuning
This post is co-authored by Tristan Miller from Best Egg. Best Egg is a leading financial confidence platform that provides lending products and resources focused on helping people feel more confident as they manage their everyday finances. Since March 2014, Best Egg has delivered $22 billion in consumer personal loans with strong credit performance, welcomed […]
Explain text classification model predictions using Amazon SageMaker Clarify
Model explainability refers to the process of relating the prediction of a machine learning (ML) model to the input feature values of an instance in humanly understandable terms. This field is often referred to as explainable artificial intelligence (XAI). Amazon SageMaker Clarify is a feature of Amazon SageMaker that enables data scientists and ML engineers […]
Upscale images with Stable Diffusion in Amazon SageMaker JumpStart
In November 2022, we announced that AWS customers can generate images from text with Stable Diffusion models in Amazon SageMaker JumpStart. Today, we announce a new feature that lets you upscale images (resize images without losing quality) with Stable Diffusion models in JumpStart. An image that is low resolution, blurry, and pixelated can be converted […]









