Artificial Intelligence

Category: Intermediate (200)

Pipeline for Amazon Bedrock LLM-as-a-Judge

Evaluate healthcare generative AI applications using LLM-as-a-judge on AWS

In this post, we demonstrate how to implement this evaluation framework using Amazon Bedrock, compare the performance of different generator models, including Anthropic’s Claude and Amazon Nova on Amazon Bedrock, and showcase how to use the new RAG evaluation feature to optimize knowledge base parameters and assess retrieval quality.

ByteDance processes billions of daily videos using their multimodal video understanding models on AWS Inferentia2

At ByteDance, we collaborated with Amazon Web Services (AWS) to deploy multimodal large language models (LLMs) for video understanding using AWS Inferentia2 across multiple AWS Regions around the world. By using sophisticated ML algorithms, the platform efficiently scans billions of videos each day. In this post, we discuss the use of multimodal LLMs for video understanding, the solution architecture, and techniques for performance optimization.

Reducing hallucinations in LLM agents with a verified semantic cache using Amazon Bedrock Knowledge Bases

This post introduces a solution to reduce hallucinations in Large Language Models (LLMs) by implementing a verified semantic cache using Amazon Bedrock Knowledge Bases, which checks if user questions match curated and verified responses before generating new answers. The solution combines the flexibility of LLMs with reliable, verified answers to improve response accuracy, reduce latency, and lower costs while preventing potential misinformation in critical domains such as healthcare, finance, and legal services.

Maximize your file server data’s potential by using Amazon Q Business on Amazon FSx for Windows

In this post, we show you how to connect Amazon Q, a generative AI-powered assistant, to Amazon FSx for Windows File Server to securely analyze, query, and extract insights from your file system data.

Generate synthetic counterparty (CR) risk data with generative AI using Amazon Bedrock LLMs and RAG

In this post, we explore how you can use LLMs with advanced Retrieval Augmented Generation (RAG) to generate high-quality synthetic data for a finance domain use case. You can use the same technique for synthetic data for other business domain use cases as well. For this post, we demonstrate how to generate counterparty risk (CR) data, which would be beneficial for over-the-counter (OTC) derivatives that are traded directly between two parties, without going through a formal exchange.

Best practices for Amazon SageMaker HyperPod task governance

In this post, we provide best practices to maximize the value of SageMaker HyperPod task governance and make the administration and data science experiences seamless. We also discuss common governance scenarios when administering and running generative AI development tasks.

Fine-tune LLMs with synthetic data for context-based Q&A using Amazon Bedrock

In this post, we explore how to use Amazon Bedrock to generate synthetic training data to fine-tune an LLM. Additionally, we provide concrete evaluation results that showcase the power of synthetic data in fine-tuning when data is scarce.

product and solution diagram

LLM-as-a-judge on Amazon Bedrock Model Evaluation

This blog post explores LLM-as-a-judge on Amazon Bedrock Model Evaluation, providing comprehensive guidance on feature setup, evaluating job initiation through both the console and Python SDK and APIs, and demonstrating how this innovative evaluation feature can enhance generative AI applications across multiple metric categories including quality, user experience, instruction following, and safety.

Virtual Meteorologist Featured Image

Building a virtual meteorologist using Amazon Bedrock Agents

In this post, we present a streamlined approach to deploying an AI-powered agent by combining Amazon Bedrock Agents and a foundation model (FM). We guide you through the process of configuring the agent and implementing the specific logic required for the virtual meteorologist to provide accurate weather-related responses.

GraphStorm SageMaker Arhcitecture Diagram

Faster distributed graph neural network training with GraphStorm v0.4

GraphStorm is a low-code enterprise graph machine learning (ML) framework that provides ML practitioners a simple way of building, training, and deploying graph ML solutions on industry-scale graph data. In this post, we demonstrate how GraphBolt enhances GraphStorm’s performance in distributed settings. We provide a hands-on example of using GraphStorm with GraphBolt on SageMaker for distributed training. Lastly, we share how to use Amazon SageMaker Pipelines with GraphStorm.