AWS Machine Learning Blog
Category: Learning Levels
Best practices for load testing Amazon SageMaker real-time inference endpoints
Amazon SageMaker is a fully managed machine learning (ML) service. With SageMaker, data scientists and developers can quickly and easily build and train ML models, and then directly deploy them into a production-ready hosted environment. It provides an integrated Jupyter authoring notebook instance for easy access to your data sources for exploration and analysis, so […]
Get smarter search results with the Amazon Kendra Intelligent Ranking and OpenSearch plugin
If you’ve had the opportunity to build a search application for unstructured data (i.e., wiki, informational web sites, self-service help pages, internal documentation, etc.) using open source or commercial-off-the-shelf search engines, then you’re probably familiar with the inherent accuracy challenges involved in getting relevant search results. The intended meaning of both query and document can […]
Model hosting patterns in Amazon SageMaker, Part 1: Common design patterns for building ML applications on Amazon SageMaker
Machine learning (ML) applications are complex to deploy and often require the ability to hyper-scale, and have ultra-low latency requirements and stringent cost budgets. Use cases such as fraud detection, product recommendations, and traffic prediction are examples where milliseconds matter and are critical for business success. Strict service level agreements (SLAs) need to be met, […]
Best practices for creating Amazon Lex interaction models
Designing and building an intelligent conversational interface is very different than building a traditional application or website. These best practices for Amazon Lex interaction models will help you develop those new skills as you design and optimize your next bot.
How Thomson Reuters delivers personalized content subscription plans at scale using Amazon Personalize
This post is co-written by Hesham Fahim from Thomson Reuters. Thomson Reuters (TR) is one of the world’s most trusted information organizations for businesses and professionals. It provides companies with the intelligence, technology, and human expertise they need to find trusted answers, enabling them to make better decisions more quickly. TR’s customers span across the […]
Connecting Amazon Redshift and RStudio on Amazon SageMaker
Last year, we announced the general availability of RStudio on Amazon SageMaker, the industry’s first fully managed RStudio Workbench integrated development environment (IDE) in the cloud. You can quickly launch the familiar RStudio IDE and dial up and down the underlying compute resources without interrupting your work, making it easy to build machine learning (ML) […]
Use machine learning to detect anomalies and predict downtime with Amazon Timestream and Amazon Lookout for Equipment
The last decade of the Industry 4.0 revolution has shown the value and importance of machine learning (ML) across verticals and environments, with more impact on manufacturing than possibly any other application. Organizations implementing a more automated, reliable, and cost-effective Operational Technology (OT) strategy have led the way, recognizing the benefits of ML in predicting […]
How to redact PII data in conversation transcripts
Customer service interactions often contain personally identifiable information (PII) such as names, phone numbers, and dates of birth. As organizations incorporate machine learning (ML) and analytics into their applications, using this data can provide insights on how to create more seamless customer experiences. However, the presence of PII information often restricts the use of this […]
Get to production-grade data faster by using new built-in interfaces with Amazon SageMaker Ground Truth Plus
Launched at AWS re:Invent 2021, Amazon SageMaker Ground Truth Plus helps you create high-quality training datasets by removing the undifferentiated heavy lifting associated with building data labeling applications and managing the labeling workforce. All you do is share data along with labeling requirements, and Ground Truth Plus sets up and manages your data labeling workflow […]
Announcing the updated Salesforce connector (V2) for Amazon Kendra
Amazon Kendra is a highly accurate and simple-to-use intelligent search service powered by machine learning (ML). Amazon Kendra offers a suite of data source connectors to simplify the process of ingesting and indexing your content, wherever it resides. Valuable data in organizations is stored in both structured and unstructured repositories. An enterprise search solution should […]