AWS Machine Learning Blog

Category: Programing Language

Use zero-shot large language models on Amazon Bedrock for custom named entity recognition

Name entity recognition (NER) is the process of extracting information of interest, called entities, from structured or unstructured text. Manually identifying all mentions of specific types of information in documents is extremely time-consuming and labor-intensive. Some examples include extracting players and positions in an NFL game summary, products mentioned in an AWS keynote transcript, or […]

Uncover hidden connections in unstructured financial data with Amazon Bedrock and Amazon Neptune

In asset management, portfolio managers need to closely monitor companies in their investment universe to identify risks and opportunities, and guide investment decisions. Tracking direct events like earnings reports or credit downgrades is straightforward—you can set up alerts to notify managers of news containing company names. However, detecting second and third-order impacts arising from events […]

Unlocking language barriers: Translate application logs with Amazon Translate for seamless support

This post addresses the challenge faced by developers and support teams when application logs are presented in languages other than English, making it difficult for them to debug and provide support. The proposed solution uses Amazon Translate to automatically translate non-English logs in CloudWatch, and provides step-by-step guidance on deploying the solution in your environment.

Implement smart document search index with Amazon Textract and Amazon OpenSearch

In this post, we’ll take you on a journey to rapidly build and deploy a document search indexing solution that helps your organization to better harness and extract insights from documents. Whether you’re in Human Resources looking for specific clauses in employee contracts, or a financial analyst sifting through a mountain of invoices to extract payment data, this solution is tailored to empower you to access the information you need with unprecedented speed and accuracy.

Training and serving H2O models using Amazon SageMaker

Model training and serving steps are two essential pieces of a successful end-to-end machine learning (ML) pipeline. These two steps often require different software and hardware setups to provide the best mix for a production environment. Model training is optimized for a low-cost, feasible total run duration, scientific flexibility, and model interpretability objectives, whereas model […]

Video streaming and deep learning: Using Amazon Kinesis Video Streams with Deep Java Library

Amazon Kinesis Video Streams allows you to easily ingest video data from connected devices for processing. One of the most effective ways to process this video data is using the power of deep learning. You can create an efficient service infrastructure to run these computations with a Java server, but Java support for deep learning […]