Artificial Intelligence
Tag: AI/ML
Containerize legacy Spring Boot application using Amazon Q Developer CLI and MCP server
In this post, you’ll learn how you can use Amazon Q Developer command line interface (CLI) with Model Context Protocol (MCP) servers integration to modernize a legacy Java Spring Boot application running on premises and then migrate it to Amazon Web Services (AWS) by deploying it on Amazon Elastic Kubernetes Service (Amazon EKS).
Structured outputs with Amazon Nova: A guide for builders
We launched constrained decoding to provide reliability when using tools for structured outputs. Now, tools can be used with Amazon Nova foundation models (FMs) to extract data based on complex schemas, reducing tool use errors by over 95%. In this post, we explore how you can use Amazon Nova FMs for structured output use cases.
Streamline GitHub workflows with generative AI using Amazon Bedrock and MCP
This blog post explores how to create powerful agentic applications using the Amazon Bedrock FMs, LangGraph, and the Model Context Protocol (MCP), with a practical scenario of handling a GitHub workflow of issue analysis, code fixes, and pull request generation.
Benchmarking Amazon Nova: A comprehensive analysis through MT-Bench and Arena-Hard-Auto
The repositories for MT-Bench and Arena-Hard were originally developed using OpenAI’s GPT API, primarily employing GPT-4 as the judge. Our team has expanded its functionality by integrating it with the Amazon Bedrock API to enable using Anthropic’s Claude Sonnet on Amazon as judge. In this post, we use both MT-Bench and Arena-Hard to benchmark Amazon Nova models by comparing them to other leading LLMs available through Amazon Bedrock.
Beyond accelerators: Lessons from building foundation models on AWS with Japan’s GENIAC program
In 2024, the Ministry of Economy, Trade and Industry (METI) launched the Generative AI Accelerator Challenge (GENIAC)—a Japanese national program to boost generative AI by providing companies with funding, mentorship, and massive compute resources for foundation model (FM) development. AWS was selected as the cloud provider for GENIAC’s second cycle (cycle 2). It provided infrastructure and technical guidance for 12 participating organizations.
How PayU built a secure enterprise AI assistant using Amazon Bedrock
PayU offers a full-stack digital financial services system that serves the financial needs of merchants, banks, and consumers through technology. In this post, we explain how we equipped the PayU team with an enterprise AI solution and democratized AI access using Amazon Bedrock, without compromising on data residency requirements.
Fraud detection empowered by federated learning with the Flower framework on Amazon SageMaker AI
In this post, we explore how SageMaker and federated learning help financial institutions build scalable, privacy-first fraud detection systems.
Improve conversational AI response times for enterprise applications with the Amazon Bedrock streaming API and AWS AppSync
This post demonstrates how integrating an Amazon Bedrock streaming API with AWS AppSync subscriptions significantly enhances AI assistant responsiveness and user satisfaction. By implementing this streaming approach, the global financial services organization reduced initial response times for complex queries by approximately 75%—from 10 seconds to just 2–3 seconds—empowering users to view responses as they’re generated rather than waiting for complete answers.
Choosing the right approach for generative AI-powered structured data retrieval
In this post, we explore five different patterns for implementing LLM-powered structured data query capabilities in AWS, including direct conversational interfaces, BI tool enhancements, and custom text-to-SQL solutions.
Context extraction from image files in Amazon Q Business using LLMs
In this post, we look at a step-by-step implementation for using the custom document enrichment (CDE) feature within an Amazon Q Business application to process standalone image files. We walk you through an AWS Lambda function configured within CDE to process various image file types, and showcase an example scenario of how this integration enhances Amazon Q Business’s ability to provide comprehensive insights.