AWS Public Sector Blog
Tag: Amazon Athena
Use Amazon SageMaker to perform data analytics in AWS GovCloud (US) Regions
Amazon SageMaker is a fully managed machine learning (ML) service that provides various capabilities, including Jupyter Notebook instances. While RStudio, a popular integrated development environment (IDE) for R, is available as a managed service in Amazon Web Services (AWS) commercial Regions, it’s currently not offered in AWS GovCloud (US) Regions. Read this post, however, to learn how you can use SageMaker notebook instances with the R kernel to perform data analytics tasks in AWS GovCloud (US) Regions.
Unlocking data governance for multiple accounts with Amazon DataZone
This post discusses how Amazon Web Services (AWS) can help you successfully set up an Amazon DataZone domain, aggregate data from multiple sources into a single centralized environment, and perform analytics on that data. Additionally, this post provides a sample architecture as well as a walkthrough on how to set up that architecture. Ultimately, this post serves as a valuable resource if you’re seeking to optimize your data management processes and derive actionable insights to drive business growth.
Modern data strategy for government tax and labor systems
Introduction Government authorities such as tax, unemployment insurance, and other finance agencies across the US and globally are seeking ways to innovate. They are trying to unlock insights from their data, deliver better customer experiences, and improve operations using cutting-edge technologies such as generative artificial intelligence (AI), machine learning (ML), and other data analytics tools. […]
Build population health systems to enhance healthcare customer experiences on AWS
As the amount of health data increases, different healthcare, life sciences, population health, and public health organizations are working to modernize their data infrastructure, unify their data, and innovate faster with technologies like artificial intelligence and machine learning (AI/ML). In this blog post, we dive deep on architecture guidance that enables healthcare providers to improve patient care.
Extracting, analyzing, and interpreting information from Medicaid forms with AWS
What if paper forms could be processed at the same speed as digital forms? What if their contents could be automatically entered in the same database as the digital forms? Medicaid agencies could analyze data in near real time and drive actionable insights on a single dashboard. By using artificial intelligence (AI) and machine learning (ML) services from AWS, Medicaid agencies can create this streamlined solution. In this walkthrough, learn how to extract, analyze, and interpret relevant information from paper-based Medicaid claims forms.
Querying the Daylight OpenStreetMap Distribution with Amazon Athena
In 2020, Meta introduced the Daylight Map Distribution, which combines OpenStreetMap (OSM) data with quality and consistency checks from Daylight mapping partners to create a no-cost, stable, and simple-to-use global map. This blog post provides a brief overview of OSM and Daylight followed by a step-by-step tutorial using five real-world examples. We combine the powerful query capabilities of Amazon Athena from with the feature-rich Daylight OSM data to demonstrate a typical OSM data analysis workflow.
Supporting health equity with data insights and visualizations using AWS
In this guest post, Ajay K. Gupta, co-founder and chief executive officer (CEO) of HSR.health, explains how healthcare technology (HealthTech) nonprofit HSR.health uses geospatial artificial intelligence and AWS to develop solutions that support improvements in healthcare and health equity around the world.
Analyzing vehicle fleet location data from a data lake with AWS
At AWS, many public sector customers operate fleets of vehicles (e.g. emergency response, public transportation) that generate location data, which is ultimately stored in a data lake. These customers frequently ask how they can quickly visualize this data and extract insights that can help them optimize how they operate their vehicle fleets. In this post, learn how to use Amazon Athena and Amazon Location Service to perform ad hoc reverse geocoding on a notional dataset of vehicle location history, and visualize the results on an Amazon QuickSight map.
Designing an educational big data analysis architecture with AWS
In this blog post, learn a high-level architecture, built on AWS, that uses a graph database to analyze unstructured and structured educational data that can, for example, help inform a recommendation to a student for the appropriate courses to take in their next semester based on multiple personalized data factors.
Visualize data lake address datasets on a map with Amazon Athena and Amazon Location Service geocoding
Many public sector customers in government, healthcare, and life sciences have data lakes that contain addresses (e.g., 123 Main Street). These customers frequently ask how they can quickly visualize these addresses on a geographic map to get a more intuitive understanding of how these addresses are distributed. In this post, learn how to use Amazon Athena and Amazon Location Service to perform ad hoc geocoding on an example dataset and visualize these geocoded addresses on an Amazon QuickSight map.