Amazon Web Services ブログ

AWS Database Migration Service – 現在も増え続けているこれまでの移行数 20,000 件

AWS Database Migration Service について初めてブログ (AWS Database Migration Service) を投稿したのは 1 年ほど前のことです。その時点で AWS ユーザー 1,000 人がすでに AWS への移行の一部として同サービスを使用していました。簡単に説明すると、AWS Database Migration Service とスキーマ変換ツール (SCT) は、AWS のお客様が高価な独自のデータベースやデータウェアハウスから、リレーショナルデータをよりコスト効率の良い Amazon Aurora、Amazon Redshift、MySQL、MariaDB、PostgreSQL といったクラウドベースのデータベースやデータウェアハウスに、ダウンタイムを最低限に抑えた状態で移行できるようにサポートします。ユーザーの皆様からは、その柔軟性とコスト効率に優れた点において良い評価を頂いています。たとえば Amazon Aurora に移行すると、商用データベースに掛かる 10 分の 1 のコストで MySQL と PostgreSQL との互換性を持つデータベースにアクセスすることができます。Expedia、Thomas Publishing、Pega、Veoci といった企業による使用事例は AWS Database Migration Services Customer Testimonials でご覧いただけます。 独自の移行数 20,000 件 AWS のお客様は、これまでに AWS […]

Read More

New – 専用のショートコードから大量の SMS メッセージを送信

銀行、クレジットカード会社、モバイルプロバイダ、その他にも頻繁に使用するサービスの企業などから、パスワードリマインダーやサービスの更新、重要なカスタマーサービス情報について SMS (ショートメッセージサービス) メッセージが送られてきます。AWS のお客様は、ここ何年にもわたり Amazon Simple Notification Service (SNS) で SMS メッセージを送信してきました (詳細は Amazon Simple Notification Service Now Supports SMS をご覧ください)。こうしたメッセージには、複数の AWS ユーザーが共有する小さな一連の 10 桁の数字が使用されています。Telephone Consumer Protection Act (TCPA) と Common Short Code Administration (CSCA) の規約に基づき、10 桁の数字を使用したメッセージはカスタマーサービスとチャット機能に対応することができますが、更新のリクエストや予定のリマインダー、PIN コードの送信といった application-to-person (A2P) メッセージを使用することはできません。また、顧客はレート制限の対象となり、1 秒につき送信できるのは 1 件のみとなります。こうしたルールと制限は顧客の安全性を保護し、SMS の適用性を制限することもできます。 専用のショートコード ご利用されているアプリケーションで SMS をさらに有効に活用できるようにするため、SMS 専用ショートコードのサポートを追加しました。こうしたコードは専用コードであるため、ブランドの認知度を高めるチャンスにもなります。AWS Management Console で専用の番号 (5 […]

Read More

週刊 AWS – 2017 年 2 月 27 日

このエディションには当社からのすべてのお知らせ、当社のすべてのブログのコンテンツ、およびコミュニティで作成された AWS コンテンツをできるだけ多く含めました。今後、ツールや自動化の準備が整い次第、他のセクションもご紹介していきたいと思っています。 月曜日 2 月 27 日 AWS 組織 – 複数の AWS アカウント向けのポリシー管理を一般公開しました。 有効期限 (TTL) を使用した DynamoDB アイテムの管理が可能になりました。 Amazon Aurora リリース 1.11 が利用できるようになったことを発表しました。 EC2 スポットアドバイザーと EC2 スポット群のヘルスチェックをリリースしました。 AWS Database Blog がシャーディングしたシステムを Aurora で統合しリソース消費を低減させる方法を公開しました。 AWS Partner Network Blog が Amazon S3 でマルチパートアップロードのライフサイクルルールを自動化する方法を公開しました。 CloudCheckr がニューヨーク州ロチェスターの AWS ユーザーグループの改善について語りました。 火曜日 2 月 28 日 2017 年 2 月の […]

Read More

AWS Health Tools リポジトリを発表

今回は Tipu Qureshi と Ram Atur を迎え、AWS Health / Personal Health Dashboard の Git リポジトリに関する最新情報についてご紹介します。 -Ana 改善操作の自動化やヘルスアラートのカスタマイズを可能にするコミュニティベースのツールソース、AWS Health Tools のリポジトリを本日リリースしました。AWS Health サービスは、AWS インフラストラクチャに影響するイベントにおいてユーザー独自の情報を提供します。これにより、予定済みの変更を実施しやすくしたり、ユーザーの AWS リソースやアカウントに関する問題のトラブルシューティングを促進することができます。また、AWS Health API は AWS リソースの基盤となる AWS サービスのパフォーマンスや可用性について、各ユーザーに適した情報を表示する Personal Health Dashboard を提供します。さらに Amazon CloudWatch イベントを使用すると、AWS Personal Health Dashboard (AWS Health) イベントのステータスで変更を検出し対応することができます。AWS Health Tools は AWS Health、Amazon CloudWatch イベント、AWS Lambda の統合を活用し、AWS インフラストラクチャに関するイベントへの対応の自動化をカスタマイズすることもできます。たとえば、AWS […]

Read More

Amazon RDS – 2016 を振り返る

昨年は 294 件のブログを公開しましたが、取り上げることができなかった紹介に値するリリースはいくつもありました。そこで今回は Amazon Relational Database Service (RDS) に焦点を当て、このファミリーが 2016 年に進歩を遂げたすべてのポイントに関する総集編をお届けします。去年、同チームは 4 つの主なエリアに注目しました。 高可用性 拡張モニタリング セキュリティの簡略化 データベースエンジンの更新 では、これらのエリアを見ていきましょう。 高可用性 リレーショナルデータベースは様々なタイプのアプリケーションにおいて、その中心にあります。高可用性の高いアプリケーションをお客様が構築できるようにするため、RDS は 2010 年初期からマルチ AZ サポートを提供しています (詳細は Amazon RDS – Multi-AZ Deployments For Enhanced Availability & Reliability をご覧ください)。データベースインスタンスの作成時にマルチ AZ 配置を選択すれば、複数のインスタンス設定、レプリケーションのアレンジ、ネットワーク、インスタンス、ネットワーク問題などの検出に使うスクリプトを書いたり、フェイルオーバーの決断や新しいセカンダリインスタンスをオンラインにするために、何週間にもわたりセットアップにかける時間を省くことができます。また、RDS はクロスリージョンリードレプリカを作成しやすくします。高可用性を実現しやすくするため、AWS が 2016 年に行ったその他の機能強化については次のブログをご覧ください。 RDS SLA が Amazon RDS for MariaDB を対象に Amazon RDS がアジアパシフィック (ソウル) […]

Read More

Streamlineのケーススタディ:Amazon GameLiftで加速リリース

Proletariatについて ボストンに拠点を置くProletariatは、革新的なマルチプレイヤー体験の構築に焦点を当てたインディーゲーム企業です。5人のゲーム業界のベテランによって2012年に設立されました。彼らは、賞を獲得したWorld Zombinationの立案者です。World Zombinationは、プレイヤー同士が共に戦略を立て合ってゾンビや人間の大群を用いて街を破壊したり守ったりする巨大なオンラインゲームです。彼らの最新のマルチプレイヤーゲームであるStreamlineは、オーディエンスのインタラクティブなゲーム参加が特徴であり、ストリーミング配信者や視聴者が試合中にゲームプレイルールをリアルタイムに変更することができます。 課題 Proletariatは、3月のGDC 2016でStreamlineを公表し、ゲームストリーマーのプレミアムイベントである9月のTwitchCon 2016でベータ版を公開する予定であると告知していました。しかし、TwitchCon 2016のTwitch Prime一般公開に含めないかという話をAmazonが持ちかけたところ、ProletariatはStreamlineを誰でもプレイできるようにするために開発を加速することを決めました。彼らは興奮する一方で、自分たちの独自のゲームサーバソリューションが、管理に手間がかかり過ぎることと増加していくプレイヤー需要をサポートするために必要な機能が足りていないことを気にしていました。 Proletariatの独自のクラウドソリューションはAWS Elastic Container Service (ECS)を中心に構築されていました。AWS ECSは、AWS EC2インスタンス上のアプリケーションの管理を容易にしてくれるコンテナ管理のサービスです。サーバのヘルスチェックを実行したりプレイヤーを利用可能なゲームサーバに接続するなど、彼らは基本的なゲームサーバの機能を手動で操作していました。これらのプロセスによってプレイヤーの負荷が処理されますが、Streamlineが一般利用可能になってしまえば管理は手間がかかり過ぎるでしょう。また、彼らの独自のクラウドソリューションは、どのゲームサーバがアクティブなゲームセッションを保持しているかというこを特定することができませんでした。これは、サーバのキャパシティを手動で調整している間に誤ってアクティブなゲームセッションを縮小し、プレイヤーをStreamlineから切断してしましまう可能性があることを意味していました。単一のEC2インスタンス上で複数のゲームサーバプロセスを実行することができないので、テストをシンプルにすることも困難でした。各ゲームサーバはユニークな公開ポートを必要としますが、コンテナ内部からはその公開ポートを取得することができませんでした。 Proletariatは、ゲームサーバのホスティングにAWSの実績のあるインフラストラクチャを使い続けることを希望していましたが、必要な機能を構築するには数千時間はかかりそうでした。あっという間ににTwitchCon 2016の開催は近づき、ProletariatはAmazon GameLiftを紹介されました。Amazon GameLiftはAWSのマネージドサービスです。ゲームサーバのホスティングをシンプルにしサーバキャパシティを数分でスケールします。 「Proletariatのチームにとって選択肢は非常にシンプルでした。つまり、我々のクラウドインフラストラクチャを構築するのに数ヶ月を費やすためにエンジニアチームを雇うか、あるいはAmazon GameLiftで数分でデプロイするか、です。」とProletariat社CEOの Seth Sivakは言いました。 実装 Proletariatは、Amazon GameLift Server SDK for C++をダウンロードしUnreal Engineゲームサーバのビルドに統合し、ゲームサーバをAmazon GameLiftにアップロードしました。Unreal Engineゲームサーバを格納するために、5つのGameLiftインスタンスタイプのどれが自分たちのニーズに最も適しているかを判断する必要がありました。「リアルタイムゲームでは、ネットワークが最適化されたAmazon GameLiftインスタンスが必要でした。そのため、私達は一連のインスタンスにc4.xlarge.gameliftを選択しました。」とStreamlineのリードエンジニアである Cauê Waneck は言いました。「Amazon GameLiftは、各インスタンス上で4つのゲームサーバをサポートするように実行設定を構成することができます。これは、私達のゲームサーバがシングルスレッド構成であることを考えると完璧です。これにより、vCPUあたり1つのゲームサーバプロセスをうまく活用できるようになり、テストとイテレーションのプロセスが大幅にシンプルになります。」 独自に作成したNode.jsのマッチメイキングシステムとAmazon GameLift上のC++のゲームサーバ間のゲームセッションの新規作成を管理するために、ProletariatはAWS JapaScript SDK with Amazon GameLiftを使用しました。また、彼らはクイックマッチに利用可能なキャパシティを持つゲームサーバを見つけるために特殊なゲームセッションデータを使用しました。このデータは、サーバが新規プレイヤーを受け入れるべきかどうかを分類し、どのゲームセッションが利用可能なプレイヤースロットを持っているかを特定するのに役立ちました。「Amazon GameLiftは、大量のプレイヤーのマッチメイクを容易にし、待ち時間を減少させました。」とWaneckは言いました。「さらに、ゲームセッションをパーティーリーダーに関連付けるということが可能だったので、プレイヤーにカスタムゲームマッチの開催を可能にするというかたちでも役に立ちました。」 Proletariatは、アクティブなゲームを保持するインスタンスがスケールダウンされてプレイヤーをオフラインにしてしまうことを防ぐために、Amazon GameLift組み込みのゲームセッション保護の有効化も行いました。「Amazon GameLiftは保険のようなものです。サーバのスケーリング、とりわけ起動時のスケーリングにおいて安心を与えてくれます。」とWaneckは言いました。 AWS Command Line Interface […]

Read More

JSONSerDe によるマッピングを使って、入れ子の JSON から Amazon Athena のテーブルを作成する

多くのシステムでは、イベント情報を記録するのに Java Script Object Notation (JSON) を使っています。JSON は効率的かつ柔軟ではありますが、JSON から情報を取り出すのは面倒です。 この投稿では、ログデリバリー手段としての Amazon Kinesis Firehose、ログ保存先としての Amazon S3、データの加工整形やデータベースへの挿入なしに ログに対して JSONSerDe を使って SQL クエリを投げる手段としての Amazon Athena を、緊密に連携させます。これらの処理は、完全にサーバーレスで行われます。コンピューティングリソースを準備する必要はありません。 Amazon SES を使えば、サービス間の全メッセージに対する詳細なログが入手でき、SES イベント発行によって、それを Firehose でも利用することができます。しかし、トレンドやコンプライアンスのデータに関する詳細ログのパースには、多額のインフラ投資や開発期間が必要となります。Athena は保存されているデータに対して、そのままのフォーマットで、コードを書いたりアーキテクチャ設計をしたりすることなく直接クエリできることにより、こうしたデータ探索に非常に適しています。その上、Athena では多くの標準 SQL クエリとシンタックスが利用可能です。 ウォークスルー: データセットの作成 まず、以下のような SES 送信イベントのデータセットをみてみましょう。 { “eventType”: “Send”, “mail”: { “timestamp”: “2017-01-18T18:08:44.830Z”, “source”: “youraddress@example.com”, “sourceArn”: “arn:aws:ses:us-west-2:111222333:identity/youraddress@example.com”, “sendingAccountId”: “111222333”, “messageId”: “01010159b2c4471e-fc6e26e2-af14-4f28-b814-69e488740023-000000”, “destination”: [“success@simulator.amazonses.com”], […]

Read More

AWS クイックスタートの更新 – Tableau、Splunk、Compliance、Alfresco、Symantec

AWS クイックスタートは AWS で人気のソリューションのデプロイをサポートします。各クイックスタートは AWS のソリューションアーキテクトやパートナーが設計し、セキュリティや高可用性における AWS のベストプラクティスを活用しています。テストまたは本番稼働環境ですぐにクイックスタートをご利用いただけます。シングルクリックで起動できるクイックスタートには、広範囲にわたる内容を取り上げたデプロイメントガイドと AWS CloudFormation テンプレートが含まれています。クイックスタートは次の 7 つのカテゴリに分類されています。 開発運用 データベースとストレージ ビッグデータと分析 セキュリティ & コンプライアンス Microsoft & SAP ネットワークとアクセス その他 過去 2 か月間で 6 つの新しいクイックスタートをコレクションに追加し、合計数は 42 件になりました。次に、新しいクイックスタートの各カテゴリの概要をご紹介します。 Tableau Server (ビッグデータと分析) AWS クイックスタートの Tableau Server は AWS Cloud で完全に機能する Tableau Server のデプロイをサポートします。デフォルト VPC でシングルノードを起動したり、新規または既存の VPC でマルチノードクラスターのデプロイメントができます。クラスターアーキテクチャについてはこちらをご覧ください: CloudFormation テンプレートは Tableau アクティベーションキーについてもプロンプトを表示します。 Splunk Enterprise […]

Read More

SAP Database Migration Option(DMO)を使ったAWSへの移行

Somckit Khemmanivanhは、Amazon Web Services (AWS)のSAPソリューションアーキテクトです。 このブログ記事では、SAP Software Update Manager(SUM)の機能であるDatabase Migration Option(DMO)を使って、AnyDBデータベースからAWS上のSAP HANAに移行する方法を説明します。SAPでは、SAP社がサポートするSAP HANA以外のソース・データベース(DB2、Oracle、SQL Serverなど)を指すときに、AnyDBという用語を使用しています。ここでは、オンプレミス・アーキテクチャからAWSへの移行オプションについて説明します(ここで留意すべきは、SAP HANAがターゲット・プラットフォームでない場合、他にも多くの移行オプションがあることです。詳細はホワイトペーパーMigrating SAP HANA Systems to X1 Instances on AWSをご覧ください)。 SAP HANAは完全なインメモリーで、列指向に最適化され、また圧縮されたデータベースです。 SAP社により認定されたSAP HANAシステムでは、160+ GB RAMから2TB RAMまでのシステムでSAP HANAデータベースをスケールアップ構成として稼働できます。また、最大14TBまでの認定されたスケールアウト構成も利用可能です。AWSであれば、このシステム構成の柔軟性により、ビジネスとITのニーズに合わせて拡張することができます。もしこれ以上のメモリーを要求するワークロードがある場合は、ぜひご連絡ください。私たちは、お客様要件にお応えできるよう取り組みたいと考えています。 DMOの概要については、SAP Community Networkをご覧ください。大まかには、AnyDBで稼働するSAPシステムをSAP HANAデータベースに移行する際にDMOを使うことができます。また、DMOにより、SAPシステムのソフトウェア・アップグレードとユニコード変換を移行時に合わせて行うこともできます(Enhancement Package(EHP) 8以降、ユニコードは必須)。 標準的なDMOのプロセスでは、ソースのAnyDBをターゲットのSAP HANAデータベースにオンラインかつ直接移行します。 図1: SAP HANA DMOのプロセス 移行先がAWS上のSAP HANAシステムである場合、この直接の移行プロセスを容易にするためにネットワーク接続を確立する必要があります。加えて、標準的なDMOのプロセスにおいて、SAP Note 2277055 – Database Migration Option (DMO) of SUM 1.0 […]

Read More

AWSでの疎結合データセットの適合、検索、分析

あなたは刺激的な仮説を思いつきました。そして今、あなたは、それを証明する(あるいは反論する)ためにできるだけ多くのデータを見つけて分析したいと思っています。適用可能な多くのデータセットがありますが、それらは異なる人によって異なる時間に作成され、共通の標準形式に準拠していません。異なるものを意味する変数に対して同じ名前を、同じものを意味する変数に対して異なる名前を使用しています。異なる測定単位と異なるカテゴリを使用しています。あるものは他のものより多くの変数を持っています。そして、それらはすべてデータ品質の問題を抱えています(例えば、日時が間違っている、地理座標が間違っているなど)。 最初に、これらのデータセットを適合させ、同じことを意味する変数を識別し、これらの変数が同じ名前と単位を持つことを確認する方法が必要です。無効なデータでレコードをクリーンアップまたは削除する必要もあります。 データセットが適合したら、データを検索して、興味のあるデータセットを見つける必要があります。それらのすべてにあなたの仮説に関連するレコードがあるわけではありませんので、いくつかの重要な変数に絞り込んでデータセットを絞り込み、十分に一致するレコードが含まれていることを確認する必要があります。 関心のあるデータセットを特定したら、そのデータにカスタム分析を実行して仮説を証明し、美しいビジュアライゼーションを作成して世界と共有することができます。 このブログ記事では、これらの問題を解決する方法を示すサンプルアプリケーションについて説明します。サンプルアプリケーションをインストールすると、次のようになります。 異なる3つのデータセットを適合させて索引付けし、検索可能にします。 事前分析を行い、関連するデータセットを見つけるために、データセットを検索するための、データ駆動のカスタマイズ可能なUIを提示します。 Amazon AthenaやAmazon QuickSightとの統合により、カスタム解析やビジュアライゼーションが可能です

Read More