AWS Big Data Blog

Category: *Post Types

Implement Amazon EMR HBase Graceful Scaling

Apache HBase is a massively scalable, distributed big data store in the Apache Hadoop ecosystem. We can use Amazon EMR with HBase on top of Amazon Simple Storage Service (Amazon S3) for random, strictly consistent real-time access for tables with Apache Kylin. This post demonstrates how to gracefully decommission target region servers programmatically.

Architect fault-tolerant applications with instance fleets on Amazon EMR on EC2

In this post, we show how to optimize capacity by analyzing EMR workloads and implementing strategies tailored to your workload patterns. We walk through assessing the historical compute usage of a workload and use a combination of strategies to reduce the likelihood of InsufficientCapacityExceptions (ICE) when Amazon EMR launches specific EC2 instance types. We implement flexible instance fleet strategies to reduce dependency on specific instance types and use Amazon EC2 On-Demand Capacity Reservation (ODCRs) for predictable, steady-state workloads. Following this approach can help prevent job failures due to capacity limits while optimizing your cluster for cost and performance.

Deploy real-time analytics with StarTree for managed Apache Pinot on AWS

In this post, we introduce StarTree as a managed solution on AWS for teams seeking the advantages of Pinot. We highlight the key distinctions between open-source Pinot and StarTree, and provide valuable insights for organizations considering a more streamlined approach to their real-time analytics infrastructure.

Design patterns for implementing Hive Metastore for Amazon EMR on EKS

In this post, we explore the design patterns for implementing the Hive Metastore (HMS) with EMR on EKS with Spark Operator, each offering distinct advantages depending on your requirements. Whether you choose to deploy HMS as a sidecar container within the Apache Spark Driver pod, or as a Kubernetes deployment in the data processing EKS cluster, or as an external HMS service in a separate EKS cluster, the key considerations revolve around communication efficiency, scalability, resource isolation, high availability, and security.

Governing streaming data in Amazon DataZone with the Data Solutions Framework on AWS

In this post, we explore how AWS customers can extend Amazon DataZone to support streaming data such as Amazon Managed Streaming for Apache Kafka (Amazon MSK) topics. Developers and DevOps managers can use Amazon MSK, a popular streaming data service, to run Kafka applications and Kafka Connect connectors on AWS without becoming experts in operating it.