AWS Big Data Blog

Tag: Amazon Redshift

ETL and ELT design patterns for lake house architecture using Amazon Redshift: Part 2

Part 1 of this multi-post series, ETL and ELT design patterns for lake house architecture using Amazon Redshift: Part 1, discussed common customer use cases and design best practices for building ELT and ETL data processing pipelines for data lake architecture using Amazon Redshift Spectrum, Concurrency Scaling, and recent support for data lake export. This […]

Read More

ETL and ELT design patterns for lake house architecture using Amazon Redshift: Part 1

Part 1 of this multi-post series discusses design best practices for building scalable ETL (extract, transform, load) and ELT (extract, load, transform) data processing pipelines using both primary and short-lived Amazon Redshift clusters. You also learn about related use cases for some key Amazon Redshift features such as Amazon Redshift Spectrum, Concurrency Scaling, and recent […]

Read More

Simplify management of Amazon Redshift clusters with the Redshift console

Amazon Redshift is the most popular and the fastest cloud data warehouse. It includes a console for administrators to create, configure, and manage Amazon Redshift clusters. The new Amazon Redshift console modernizes the user interface and adds several features to improve managing your clusters and workloads running on clusters. The new Amazon Redshift console provides visibility to the health and performance of clusters from a unified dashboard, simplified management of clusters by streamlining several screens and flows, improved mean-time-to-diagnose query performance issues by adding capabilities to monitor user queries and correlate with cluster performance metrics, as well as the ability for non-admin users to use Query Editor.

Read More

Orchestrate Amazon Redshift-Based ETL workflows with AWS Step Functions and AWS Glue

In this post, I show how to use AWS Step Functions and AWS Glue Python Shell to orchestrate tasks for those Amazon Redshift-based ETL workflows in a completely serverless fashion. AWS Glue Python Shell is a Python runtime environment for running small to medium-sized ETL tasks, such as submitting SQL queries and waiting for a response. Step Functions lets you coordinate multiple AWS services into workflows so you can easily run and monitor a series of ETL tasks. Both AWS Glue Python Shell and Step Functions are serverless, allowing you to automatically run and scale them in response to events you define, rather than requiring you to provision, scale, and manage servers.

Read More

Protect and Audit PII data in Amazon Redshift with DataSunrise Security

This post focuses on active security for Amazon Redshift, in particular DataSunrise’s capabilities for masking and access control of personally identifiable information (PII), which you can back with DataSunrise’s passive security offerings such as auditing access of sensitive information. This post discusses DataSunrise security for Amazon Redshift, how it works, and how to get started.

Read More

Automate Amazon Redshift cluster creation using AWS CloudFormation

In this post, I explain how to automate the deployment of an Amazon Redshift cluster in an AWS account. AWS best practices for security and high availability drive the cluster’s configuration, and you can create it quickly by using AWS CloudFormation. I walk you through a set of sample CloudFormation templates, which you can customize as per your needs.

Read More

How to migrate a large data warehouse from IBM Netezza to Amazon Redshift with no downtime

In this article, we explain how this customer performed a large-scale data warehouse migration from IBM Netezza to Amazon Redshift without downtime, by following a thoroughly planned migration process, and leveraging AWS Schema Conversion Tool (SCT) and Amazon Redshift best practices.

Read More

Bringing your stored procedures to Amazon Redshift

Amazon always works backwards from the customer’s needs. Customers have made strong requests that they want stored procedures in Amazon Redshift, to make it easier to migrate their existing workloads from legacy, on-premises data warehouses.

With that primary goal in mind, AWS chose to implement PL/pqSQL stored procedure to maximize compatibility with existing procedures and simplify migrations. In this post, we discuss how and where to use stored procedures to improve operational efficiency and security. We also explain how to use stored procedures with AWS Schema Conversion Tool.

Read More

Orchestrate an ETL process using AWS Step Functions for Amazon Redshift

Modern data lakes depend on extract, transform, and load (ETL) operations to convert bulk information into usable data. This post walks through implementing an ETL orchestration process that is loosely coupled using AWS Step Functions, AWS Lambda, and AWS Batch to target an Amazon Redshift cluster.

Read More

How 3M Health Information Systems built a healthcare data reporting tool with Amazon Redshift

After reviewing many solutions, 3M HIS chose Amazon Redshift as the appropriate data warehouse solution. We concluded Amazon Redshift met our needs; a fast, fully managed, petabyte-scale data warehouse solution that uses columnar storage to minimize I/O, provides high data compression rates, and offers fast performance. We quickly spun up a cluster in our development environment, built out the dimensional model, loaded data, and made it available to perform benchmarking and testing of the user data. An extract, transform, load (ETL) tool was used to process and load the data from various sources into Amazon Redshift.

Read More