AWS Machine Learning Blog

Category: Artificial Intelligence

How Thomson Reuters built an AI platform using Amazon SageMaker to accelerate delivery of ML projects

This post is co-written by Ramdev Wudali and Kiran Mantripragada from Thomson Reuters. In 1992, Thomson Reuters (TR) released its first AI legal research service, WIN (Westlaw Is Natural), an innovation at the time, as most search engines only supported Boolean terms and connectors. Since then, TR has achieved many more milestones as its AI […]

Federated Learning on AWS with FedML: Health analytics without sharing sensitive data – Part 2

This blog post is co-written with Chaoyang He and Salman Avestimehr from FedML. Analyzing real-world healthcare and life sciences (HCLS) data poses several practical challenges, such as distributed data silos, lack of sufficient data at a single site for rare events, regulatory guidelines that prohibit data sharing, infrastructure requirement, and cost incurred in creating a […]

Federated Learning on AWS with FedML: Health analytics without sharing sensitive data – Part 1

This blog post is co-written with Chaoyang He and Salman Avestimehr from FedML. Analyzing real-world healthcare and life sciences (HCLS) data poses several practical challenges, such as distributed data silos, lack of sufficient data at any single site for rare events, regulatory guidelines that prohibit data sharing, infrastructure requirement, and cost incurred in creating a […]

Multilingual customer support translation made easy on Salesforce Service Cloud using Amazon Translate

This post was co-authored with Mark Lott, Distinguished Technical Architect, Salesforce, Inc. Enterprises that operate globally are experiencing challenges sourcing customer support professionals with multi-lingual experience. This process can be cost-prohibitive and difficult to scale, leading many enterprises to only support English for chats. Using human interpreters for translation support is expensive, and infeasible since […]

Redacting PII data at The Very Group with Amazon Comprehend

This is guest post by Andy Whittle, Principal Platform Engineer – Application & Reliability Frameworks at The Very Group. At The Very Group, which operates digital retailer Very, security is a top priority in handling data for millions of customers. Part of how The Very Group secures and tracks business operations is through activity logging […]

Enriching real-time news streams with the Refinitiv Data Library, AWS services, and Amazon SageMaker

This post is co-authored by Marios Skevofylakas, Jason Ramchandani and Haykaz Aramyan from Refinitiv, An LSEG Business. Financial service providers often need to identify relevant news, analyze it, extract insights, and take actions in real time, like trading specific instruments (such as commodities, shares, funds) based on additional information or context of the news item. […]

Best practices for load testing Amazon SageMaker real-time inference endpoints

Amazon SageMaker is a fully managed machine learning (ML) service. With SageMaker, data scientists and developers can quickly and easily build and train ML models, and then directly deploy them into a production-ready hosted environment. It provides an integrated Jupyter authoring notebook instance for easy access to your data sources for exploration and analysis, so […]

Get smarter search results with the Amazon Kendra Intelligent Ranking and OpenSearch plugin

If you’ve had the opportunity to build a search application for unstructured data (i.e., wiki, informational web sites, self-service help pages, internal documentation, etc.) using open source or commercial-off-the-shelf search engines, then you’re probably familiar with the inherent accuracy challenges involved in getting relevant search results. The intended meaning of both query and document can […]

Model hosting patterns in Amazon SageMaker, Part 1: Common design patterns for building ML applications on Amazon SageMaker

Machine learning (ML) applications are complex to deploy and often require the ability to hyper-scale, and have ultra-low latency requirements and stringent cost budgets. Use cases such as fraud detection, product recommendations, and traffic prediction are examples where milliseconds matter and are critical for business success. Strict service level agreements (SLAs) need to be met, […]