AWS Machine Learning Blog
Category: Advanced (300)
How Druva used Amazon Bedrock to address foundation model complexity when building Dru, Druva’s backup AI copilot
Druva enables cyber, data, and operational resilience for thousands of enterprises, and is trusted by 60 of the Fortune 500. In this post, we show how Druva approached natural language querying (NLQ)—asking questions in English and getting tabular data as answers—using Amazon Bedrock, the challenges they faced, sample prompts, and key learnings.
Create a generative AI–powered custom Google Chat application using Amazon Bedrock
AWS offers powerful generative AI services, including Amazon Bedrock, which allows organizations to create tailored use cases such as AI chat-based assistants that give answers based on knowledge contained in the customers’ documents, and much more. Many businesses want to integrate these cutting-edge AI capabilities with their existing collaboration tools, such as Google Chat, to […]
Discover insights from Gmail using the Gmail connector for Amazon Q Business
A number of organizations use Gmail for their business email needs. Gmail for business is part of Google Workspace, which provides a set of productivity and collaboration tools like Google Drive, Gmail, and Google Calendar. Google Drive supports storing documents such as Emails contain a wealth of information found in different places, such as within […]
Automate document processing with Amazon Bedrock Prompt Flows (preview)
This post demonstrates how to build an IDP pipeline for automatically extracting and processing data from documents using Amazon Bedrock Prompt Flows, a fully managed service that enables you to build generative AI workflow using Amazon Bedrock and other services in an intuitive visual builder. Amazon Bedrock Prompt Flows allows you to quickly update your pipelines as your business changes, scaling your document processing workflows to help meet evolving demands.
Governing the ML lifecycle at scale: Centralized observability with Amazon SageMaker and Amazon CloudWatch
This post is part of an ongoing series on governing the machine learning (ML) lifecycle at scale. To start from the beginning, refer to Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker. A multi-account strategy is essential not only for improving governance but also for enhancing […]
From RAG to fabric: Lessons learned from building real-world RAGs at GenAIIC – Part 1
In this post, we cover the core concepts behind RAG architectures and discuss strategies for evaluating RAG performance, both quantitatively through metrics and qualitatively by analyzing individual outputs. We outline several practical tips for improving text retrieval, including using hybrid search techniques, enhancing context through data preprocessing, and rewriting queries for better relevance.
Use Amazon SageMaker Studio with a custom file system in Amazon EFS
In this post, we explore three scenarios demonstrating the versatility of integrating Amazon EFS with SageMaker Studio. These scenarios highlight how Amazon EFS can provide a scalable, secure, and collaborative data storage solution for data science teams.
Improve public speaking skills using a generative AI-based virtual assistant with Amazon Bedrock
In this post, we present an Amazon Bedrock powered virtual assistant that can transcribe presentation audio and examine it for language use, grammatical errors, filler words, and repetition of words and sentences to provide recommendations as well as suggest a curated version of the speech to elevate the presentation.
Introducing SageMaker Core: A new object-oriented Python SDK for Amazon SageMaker
In this post, we show how the SageMaker Core SDK simplifies the developer experience while providing API for seamlessly executing various steps in a general ML lifecycle. We also discuss the main benefits of using this SDK along with sharing relevant resources to learn more about this SDK.
Improve LLM application robustness with Amazon Bedrock Guardrails and Amazon Bedrock Agents
In this post, we demonstrate how Amazon Bedrock Guardrails can improve the robustness of the agent framework. We are able to stop our chatbot from responding to non-relevant queries and protect personal information from our customers, ultimately improving the robustness of our agentic implementation with Amazon Bedrock Agents.