Artificial Intelligence
Category: Security, Identity, & Compliance
Build a FinOps agent using Amazon Bedrock with multi-agent capability and Amazon Nova as the foundation model
In this post, we use the multi-agent feature of Amazon Bedrock to demonstrate a powerful and innovative approach to AWS cost management. By using the advanced capabilities of Amazon Nova FMs, we’ve developed a solution that showcases how AI-driven agents can revolutionize the way organizations analyze, optimize, and manage their AWS costs.
How to configure cross-account model deployment using Amazon Bedrock Custom Model Import
In this guide, we walk you through step-by-step instructions for configuring cross-account access for Amazon Bedrock Custom Model Import, covering both non-encrypted and AWS Key Management Service (AWS KMS) based encrypted scenarios.
Maximize your file server data’s potential by using Amazon Q Business on Amazon FSx for Windows
In this post, we show you how to connect Amazon Q, a generative AI-powered assistant, to Amazon FSx for Windows File Server to securely analyze, query, and extract insights from your file system data.
Building a virtual meteorologist using Amazon Bedrock Agents
In this post, we present a streamlined approach to deploying an AI-powered agent by combining Amazon Bedrock Agents and a foundation model (FM). We guide you through the process of configuring the agent and implementing the specific logic required for the virtual meteorologist to provide accurate weather-related responses.
Accelerate digital pathology slide annotation workflows on AWS using H-optimus-0
In this post, we demonstrate how to use H-optimus-0 for two common digital pathology tasks: patch-level analysis for detailed tissue examination, and slide-level analysis for broader diagnostic assessment. Through practical examples, we show you how to adapt this FM to these specific use cases while optimizing computational resources.
Security best practices to consider while fine-tuning models in Amazon Bedrock
In this post, we implemented secure fine-tuning jobs in Amazon Bedrock, which is crucial for protecting sensitive data and maintaining the integrity of your AI models. By following the best practices outlined in this post, including proper IAM role configuration, encryption at rest and in transit, and network isolation, you can significantly enhance the security posture of your fine-tuning processes.
Video security analysis for privileged access management using generative AI and Amazon Bedrock
In this post, we show you an innovative solution to a challenge faced by security teams in highly regulated industries: the efficient security analysis of vast amounts of video recordings from Privileged Access Management (PAM) systems. We demonstrate how you can use Anthropic’s Claude 3 family of models and Amazon Bedrock to perform the complex task of analyzing video recordings of server console sessions and perform queries to highlight any potential security anomalies.
Align and monitor your Amazon Bedrock powered insurance assistance chatbot to responsible AI principles with AWS Audit Manager
Generative AI applications should be developed with adequate controls for steering the behavior of FMs. Responsible AI considerations such as privacy, security, safety, controllability, fairness, explainability, transparency and governance help ensure that AI systems are trustworthy. In this post, we demonstrate how to use the AWS generative AI best practices framework on AWS Audit Manager to evaluate this insurance claim agent from a responsible AI lens.
Efficiently build and tune custom log anomaly detection models with Amazon SageMaker
In this post, we walk you through the process to build an automated mechanism using Amazon SageMaker to process your log data, run training iterations over it to obtain the best-performing anomaly detection model, and register it with the Amazon SageMaker Model Registry for your customers to use it.
Create a generative AI assistant with Slack and Amazon Bedrock
Seamless integration of customer experience, collaboration tools, and relevant data is the foundation for delivering knowledge-based productivity gains. In this post, we show you how to integrate the popular Slack messaging service with AWS generative AI services to build a natural language assistant where business users can ask questions of an unstructured dataset.









