Amazon Web Services ブログ

Piksel RetailによるAWS上のSAP Hybris Commerceのホスティング

Piksel Retailのジェネラルマネージャーを務めるJonathan Kirby、同じくPiksel Retailのテクニカルアーキテクトを務めるMichal Stypikによる記事です。 多くの小売環境で、伝統的な方法として最もよく述べられるものに、SAP Hybris Commerceをプロダクションに導入していることがあります。Hybris Commerceは、インプレース方式のコードリリースにより、静的なクラスターとして実装されます。つまり、構成変更のために、実行中のサーバー上でファイルを置き換えたり更新したりする必要があります。アップデートには慎重なリリース計画が必要であり、ダウンタイムを適切に管理する必要もあり、現行ページの裏で変更を行わなければならず、プロセス全体が非常に混乱する恐れもあります。 いくつかの組織で、SAP Hybris Commerceをクラウドに移行することを選択していますが、「リフト・アンド・シフト」の方法を採用しています。これは、クラウドに移行はしたものの、その過程で再構築はしていないことを意味しています。その結果、プラットフォームはオンプレミス環境とほぼ同じように動作しています。 Pikselのグループ企業であるPiksel Retailでは、最近、これらの課題に対処するために、デジタルコマースチャネル (Digital Commerce Channel、DC2)を構築しました。DC2は、SAP Hybrisベースのeコマースソリューションで、Amazon Web Services (AWS)上に導入しています。

Read More

Amazon Redshift の結果のキャッシュでクエリの応答時間を 1 秒未満に

お客様によると、データウェアハウスやビジネスインテリジェンスのユーザは、常に迅速な意思決定ができるように、非常に高速な応答時間を求めているということです。またユーザは、データが変わっていなくても、同じクエリを何度も繰り返すことがよくある、とも言います。クエリを繰り返すたびにコンピューティングリソースを消費するので、クエリ全体のパフォーマンスが低下します。 今回の記事では、Amazon Redshift のクエリ結果のキャッシュについて説明します。結果のキャッシュは、まさにその名前が示すことを実行します。つまり、クエリ結果をキャッシュに格納するのです。同じデータに対して同じクエリが行われると、同じクエリを再実行するのではなく、前の検索結果をキャッシュから読み取って即座に返します。結果のキャッシュによって、システムの使用が削減され、他のワークロードでより多くのリソースを利用できるようになります。これにより、ユーザーの応答時間が高速になり、クエリ全体のスループットが向上し、並行処理が増加します。

Read More

Amazon Comprehend が構文解析をサポート

Amazon Comprehend が、Syntax API をサポートするようになりました。 これにより、テキストを (たとえば、単語の境界を抽出するために) トークン化し、対応する品詞 (PoS) を単語毎にトークン化することができます。 本日、Amazon Comprehend は、顧客のコメントが否定的であるか肯定的であるかを知ることや、たとえば「Amazon」を「組織」として固有名詞を分類して特定することなど、ユースケースの分析を可能にします。この新しい Syntax API を使用すると、顧客は最も詳細なレベルのテキストとその単語自体の構文的な意味を分析できるため、より幅広いユースケースをカバーするテキスト文書をより細かく分析することができます。 たとえば、キッチンブレンダー製品を発売したばかりで、お客様のコメントを分析して、どの色が最も多く話題に挙げられているかを調べたいとします。 API に対して次の文字列を送信します。 「I love my new red kitchen blender」 応答は、それぞれの単語、トークン ID、単語自体、オフセット (テキスト内でのその単語の位置)、品詞タグ (形容詞、名詞、動詞など)、信頼度スコア (サービスが、正しい品詞タグであると確信できる度合) を返します。 以下は、応答の例です。 { “SyntaxTokens”: [ { “Text”: “It”, “EndOffset”: 2, “BeginOffset”: 0, “PartOfSpeech”: { “Tag”: “PRON”, “Score”: 0.8389829397201538 }, “TokenId”: 1 }, { “Text”: “is”, […]

Read More

Amazon SageMaker を使用して画像を分類する

イメージ分類と画像内の物体検出が最近注目されてきていますが、アルゴリズム、データセット、フレームワーク、およびハードウェアの機能の向上が組み合わさった結果です。こうした改良のおかげで技術が一般大衆化し、イメージ分類のためのソリューションが独自で作成できるようになったのです。 画像内の物体検出は、以下の画像が示すように、こうしたアクティビティを実行するアプリケーションの中でも最も重要な機能です。 人の進路と物体追跡 実際の店舗で、商品の再配置を警告する 視覚的な検索 (画像を入力して検索する) イメージ分類および物体検出に使う技術は、深層学習 (DL) に基づいているのが現状です。DL は、多層のニューラルネットワーク (NN) あるいはディープニューラルネットワークを処理するためのアルゴリズムに焦点を当てた機械学習 (ML) のサブ領域です。一方、ML は人工知能 (AI) のサブ領域で、コンピューターサイエンスの分野です。 誰でもこれらの技術にアクセスできますが、実際のビジネスプロセスをサポートするエンドツーエンドのソリューションとして、これらの要素をつなぎ合わせて使うことはまだ難しい状況です。Amazon Rekognition は、非常に正確な顔分析と画像や動画の顔認識ができるシンプルな API を装備しており、すぐに利用できるサービスなので、最初に選ぶならよい選択肢かもしれません。さらに、顔を検出、分析、比較することができるため、多岐にわたるユーザー検証、人数計算、公共の安全といったユースケースにも利用できます。Amazon Rekognition のドキュメントを読めば、シンプルな API 呼び出しでこれらの機能全てをアプリケーションに簡単に追加できることが分かります。 ただし、ビジネス上でカスタムでのイメージ分類が必要な場合は、機械学習モデルを作成するためのパイプライン全体をサポートするプラットフォームが必要です。Amazon SageMaker は、そのためのものです。Amazon SageMaker は、ML モデル開発の全ての手順、つまりデータ検索と構築、トレーニング、および ML モデルのデプロイをサポートする、完全マネージド型のサービスです。Amazon SageMaker を使用すると、どんなビルトインアルゴリズムでも選択でき使用することができるので、市場投入までの時間と開発コストを削減できます。詳細は、「Amazon SageMaker でビルトインアルゴリズムを使用する」をご参照ください。 カスタムの画像識別子を作成する このブログ記事は、服装品やアクセサリーを識別するための画像識別子の作成を目標としています。これらのアイテムの画像がいくつかあり、それらを見て、何の物体が各画像に含まれているかを言う (予測する) モデルが必要だとしましょう。Amazon SageMaker はすでにビルトインのイメージ分類アルゴリズムを装備しています。これで、データセット (画像コレクションと各オブジェクトのそれぞれのラベル) を準備し、モデルのトレーニングを開始するだけです。 公開データセットを使用します。これは Fashion-MNIST と呼ばれる ML アルゴリズムをベンチマークするための新しい画像データセットです。データセットは、6 万例のトレーニングセットと 1 万例のテストセットで構成されています。各例は、ラベルまたはクラスに関連付けられた、28×28 のグレースケール画像です。データセットには、T […]

Read More

AWS クラウドの GPU を使用した、スケーラブルなマルチノードの深層学習トレーニング

産業規模のデータセットでディープニューラルネットワークを幅広く採用する際、大きな障壁となるのは、それらをトレーニングするのに必要な時間とリソースです。AlexNet は、2012 年の ImageNet Large Scale Visual Recognition Competition (ILSVRC) を受賞し、現在のディープニューラルネットワークのブームを打ち立てましたが、120 万個の画像、1000 カテゴリのデータセット全体をトレーニングするのに約 1 週間かかっていました。機械学習モデルの開発と最適化は、反復的なプロセスです。新しいデータでモデルを頻繁に再トレーニングし、モデルとトレーニングのパラメータを最適化することで、予測精度を向上します。2012 年以降 GPU のパフォーマンスが大幅に向上し、トレーニング時間は数週間から数時間に短縮しましたが、機械学習 (ML) の専門家は、モデルトレーニング時間をさらに短縮しようと努力しています。 同時に、予測精度を向上させるために、モデルはますます大きくなり複雑化し、よって、計算リソースの需要も増加しています。 クラウドがディープニューラルネットワークをトレーニングするためのデフォルトオプションとなったのは、オンデマンドでの拡張が可能で、俊敏性が向上しているためです。さらに、クラウドを使用することで簡単に始めることができ、プリペイド使用モデルもあるからです。 このブログ記事では、分散 / マルチノード同期トレーニングを使用して、深層学習トレーニング時間をさらに最小限に抑えるため、AWS インフラストラクチャを最適化する方法をご紹介します。ImageNet データセットでは ResNet-50 を、NVIDIA Tesla V100 GPU では Amazon EC2 P3 インスタンスを使用して、トレーニング時間をベンチマークします。90 エポックの標準的なトレーニングスケジュールを使ったモデルを、わずか 8 つの P3.16xlarge インスタンス (64 V100 GPU) を使用して、約 50 分で 75.5% を超える最上位の検証精度になるようトレーニングします。 ML 専門家はモデルの構築とトレーニングに様々な機械学習フレームワークを使用するため、Apache MXNet と Horovod を装備した […]

Read More

AWS 深層学習 AMI が、最適化された TensorFlow 1.9 および Keras 2 サポートの Apache MXNet 1.2 で、Amazon EC2 インスタンスでの深層学習を高速化

Ubuntu および Amazon Linux 用の AWS Deep Learning AMI には、ソースから直接構築され、Amazon EC2 インスタンス全体で高性能のトレーニングが可能となるように微調整されている、最適化された TensorFlow 1.9 のカスタムビルドが付属しています。さらに、この AMI には、パフォーマンスとユーザビリティが何点か改善されている最新の Apache MXNet 1.2、高性能のマルチ GPU トレーニングをサポートする新しい Keras 2-MXNet バックエンド、MXNet モデルのトレーニング向けにデバッグと可視化が改善された新しい MXBoard ツールが搭載されています。 最適化された TensorFlow 1.9 と Horovod によるより高速なトレーニング Amazon Machine Images (AMI) には、ソースから直接構築され、インテル Xeon Platinum プロセッサ搭載の Amazon EC2 C5 インスタンスでのトレーニングを高速化できる、コンピューティングに最適化された TensorFlow 1.9 のカスタムビルドが付属しています。C5.18xlarge インスタンスタイプ上で、合成 ImageNet データセットに対し、当社の TensorFlow 1.9 カスタムビルドを使用して […]

Read More

【本日よりお申し込み開始!】AWS Innovate Japan 2018 オンラインカンファレンス

AWSのラーニングを目的とした日本初開催の大規模オンラインカンファレンス「AWS Innovate Japan 2018」を、8/28〜10/10に開催することが決定しました!お客様は、時間や場所の制約にとらわれず自由に参加でき、初心者も上級者も AWS クラウドについての新たな学習ができます。8/28、9/4、9/11 のライブ開催では、AWS エキスパートによるQAも用意されています。また、セッション内容に関連した AWS に関するクイズ、ハンズオン資料、ホワイトペーパー、AWS アカウント作成のためのリンクなどが配置され、次のアクションをすぐに起こすことができます。また、Virtual Summit Osakaという名前でAWS Summit大阪で予定されていたお客様事例セッション、パートナー様資料の一部も展示されます。 本日より以下リンクから詳細確認・お申し込みが可能です。   特徴1: 目的に合ったセッションを視聴 Machine Learning、IoT、Container トラックのほか、AWSome Day オンライントレーニングを含む初心者向けなど、様々なセッションをご用意しています。 特徴2: ライブ Q&A Machine Learning、IoT、Container(ライブ配信)当日は AWS エキスパートに直接質問できます。 特徴3: 修了証明書を発行 業務として活用できるよう、視聴したセッションの証明書を発行します。 特徴4: 豊富な資料ダウンロード ハンズオンのほか、様々なソリューションやパートナー企業の資料をダウンロードできます。 Live配信スケジュール 1日目:2018 年 8 月 28 日(火)12:15 ~16:00 テーマ:「Machine Learning」機械学習でイノベーションを実現しよう 機械学習はイノベーションを実現するために必要不可欠な技術になりつつあります。本トラックでは、機械学習プロジェクトを成功に導くためのポイントを提示し、プロジェクトを加速するために AWS が提供する機械学習サービス、ならびにその利用方法について紹介します。 2日目:2018 年 9 月 4 日(火)12:15 […]

Read More

Amazon SageMaker が、バッチ変換機能と TensorFlow コンテナ向けのパイプ入力モードを追加

数日前のニューヨーク Summit で、Amazon SageMaker の 2 つの新しい機能が始まりました。ペタバイトのデータに対して非リアルタイムシナリオで予測を行うことができるバッチ変換と呼ばれる新しいバッチ推論機能と、TensorFlow コンテナのためのパイプ入力モードのサポートです。SageMaker は大好きなサービスの 1 つであり、このブログや機械学習のブログで幅広く取り上げてきました。実際、SageMaker チームのインベーションの速いペースは、追いつくのが少し難しいです。SageMaker のハイパーパラメータ最適化による自動モデルチューニングに関する最後の記事以降に、このチームは 4 つの新しい組み込みアルゴリズムと多数の新機能を発表しています。それでは、新しいバッチ変換機能を見てみましょう。 バッチ変換 バッチ変換機能は、データを変換して推論を生成するための高性能かつ高スループットの方法です。これは、大量のバッチデータを扱う場合、1 秒未満のレイテンシーを必要としない場合、あるいはトレーニングデータを前処理して変換する必要がある場合に理想的です。何よりもよい点は?この機能を利用するために、わずか 1 行のコードを追加する必要さえありません。既存のモデルをすべて使用して、それらに基づいてバッチ変換ジョブを開始することができます。この機能は追加料金なしで利用でき、基盤となるリソースについてのみ支払うことになります。 物体検出アルゴリズムでこれをどうやって行うのかを見てみましょう。サンプルのノートブックに従って、物体検出モデルのトレーニングを行いました。それでは、SageMaker コンソールに移動し、バッチ変換サブコンソールを開きます。 そこから、新しいバッチ変換ジョブを開始することができます。 ここで、自分の変換ジョブに名前をつけ、使用するモデルを選択し、使用するインスタンスの数とタイプを選択することができます。さらに、同時に推論に送信するレコードの数とペイロードのサイズに関する詳細を設定することができます。これらを手動で指定しないと、SageMaker がいくつかの適切なデフォルトを選択します。 次に、入力の場所を指定する必要があります。マニフェストファイルを使用するか、S3 の場所にあるすべてのファイルをロードするだけです。ここでは画像を扱っているので、入力のコンテンツタイプを手動で指定しました。 最後に、出力の場所を設定してジョブを開始します! ジョブが実行されると、ジョブの詳細ページを開いて、Amazon CloudWatch のメトリクスとログへのリンクをたどることができます。 ジョブが実行中であることがわかります。S3 で結果を確認すると、それぞれの画像について予測されるラベルが表示されます。 変換は、検出した物体を含む入力ファイルごとに 1 つの出力 JSON ファイルを生成しました。 ここから、AWS Glue でバケットのテーブルを作成し、Amazon Athena で結果を照会するか、Amazon QuickSight で視覚化するのは簡単です。 もちろん、これらのジョブを SageMaker API からプログラムで開始することも可能です。 自分のコンテナでバッチ変換を使用する方法についての詳細は、ドキュメントに説明があります。 TensorFlow のためのパイプ入力モード パイプ入力モードでは、高度に最適化されたマルチスレッドバックグラウンドプロセスを使用して、Amazon Simple Storage […]

Read More

2018 年 8 月の AWS Black Belt オンラインセミナーのご案内

こんにちは。マーケティングの鬼形です。8 月の AWS Black Belt オンラインセミナーの配信についてご案内させて頂きます。 !!オンラインセミナーお申し込み方法: オンラインセミナー登録ページよりお申し込みください Amazon QuickSight アップデート:一般公開後に追加された特徴的な新機能 2018 年 8 月 1 日 | 18:00 – 19:00 | IT 知識レベル:★★☆☆☆ | AWS 知識レベル:★★☆☆☆ Amazon QuickSight は高速かつサーバ運用不要の BI(ビジネスインテリジェンス) サービスです。AWS内のRDSやRedshiftといったデータソースだけでなく、オンプレミス環境や各種SaaSにも対応しています。2016年11に一般公開(GA)されて以降60以上の新機能が追加されてきました。今回サービスアップデートとして、QuickSight GA後に追加された機能の中から、便利で特徴的な機能を中心に御説明いたします。 対象者 BI環境に興味があり、Amazon QuickSightを知りたいという方全般 本セミナーで学習できること Amazon QuickSightの基本機能や料金の理解に加え、GA後に追加された特徴的な新機能をクイックに把握することが出来ます スピーカー 下佐粉 昭 Solutions Architect   クラウド設計・運用のベストプラクティス集 “AWS Well-Architected Framework” 2018 年 8 月 7 日 | 12:00 – 13:00 […]

Read More

AWS OpsWorks for Chef Automate におけるクックブックの継続的なテストとデリバリー

Chef サーバは、テスト済みの信頼できるクックブックを対象ノードの run list に簡単に追加できるハブであるべきです。しかしながら、クックブックのテストを実行し、Chef サーバへ配信する作業は手間のかかるタスクです。このプロセスをシンプルかつ迅速にするために、私たちは AWS の技術を活用してテストの実行と Chef サーバへのクックブックの配信を統合したパイプラインを構築しました。これによりクックブック開発の定型的ながらも重要な部分を自動化できます。

Read More