AWS Machine Learning Blog

Category: Artificial Intelligence

Power recommendations and search using an IMDb knowledge graph – Part 3

This three-part series demonstrates how to use graph neural networks (GNNs) and Amazon Neptune to generate movie recommendations using the IMDb and Box Office Mojo Movies/TV/OTT licensable data package, which provides a wide range of entertainment metadata, including over 1 billion user ratings; credits for more than 11 million cast and crew members; 9 million […]

AWS positioned in the Leaders category in the 2022 IDC MarketScape for APEJ AI Life-Cycle Software Tools and Platforms Vendor Assessment

The recently published IDC MarketScape: Asia/Pacific (Excluding Japan) AI Life-Cycle Software Tools and Platforms 2022 Vendor Assessment positions AWS in the Leaders category. This was the first and only APEJ-specific analyst evaluation focused on AI life-cycle software from IDC. The vendors evaluated for this MarketScape offer various software tools needed to support end-to-end machine learning […]

How Thomson Reuters delivers personalized content subscription plans at scale using Amazon Personalize

This post is co-written by Hesham Fahim from Thomson Reuters. Thomson Reuters (TR) is one of the world’s most trusted information organizations for businesses and professionals. It provides companies with the intelligence, technology, and human expertise they need to find trusted answers, enabling them to make better decisions more quickly. TR’s customers span across the […]

Connecting Amazon Redshift and RStudio on Amazon SageMaker

Last year, we announced the general availability of RStudio on Amazon SageMaker, the industry’s first fully managed RStudio Workbench integrated development environment (IDE) in the cloud. You can quickly launch the familiar RStudio IDE and dial up and down the underlying compute resources without interrupting your work, making it easy to build machine learning (ML) […]

Use machine learning to detect anomalies and predict downtime with Amazon Timestream and Amazon Lookout for Equipment

The last decade of the Industry 4.0 revolution has shown the value and importance of machine learning (ML) across verticals and environments, with more impact on manufacturing than possibly any other application. Organizations implementing a more automated, reliable, and cost-effective Operational Technology (OT) strategy have led the way, recognizing the benefits of ML in predicting […]

2022H2 Amazon Textract launch summary

Documents are a primary tool for record keeping, communication, collaboration, and transactions across many industries, including financial, medical, legal, and real estate. The millions of mortgage applications and hundreds of millions of W2 tax forms processed each year are just a few examples of such documents. Critical business data remains unlocked in unstructured documents such […]

How to redact PII data in conversation transcripts

Customer service interactions often contain personally identifiable information (PII) such as names, phone numbers, and dates of birth. As organizations incorporate machine learning (ML) and analytics into their applications, using this data can provide insights on how to create more seamless customer experiences. However, the presence of PII information often restricts the use of this […]

Get to production-grade data faster by using new built-in interfaces with Amazon SageMaker Ground Truth Plus

Launched at AWS re:Invent 2021, Amazon SageMaker Ground Truth Plus helps you create high-quality training datasets by removing the undifferentiated heavy lifting associated with building data labeling applications and managing the labeling workforce. All you do is share data along with labeling requirements, and Ground Truth Plus sets up and manages your data labeling workflow […]

Announcing the updated Salesforce connector (V2) for Amazon Kendra

Amazon Kendra is a highly accurate and simple-to-use intelligent search service powered by machine learning (ML). Amazon Kendra offers a suite of data source connectors to simplify the process of ingesting and indexing your content, wherever it resides. Valuable data in organizations is stored in both structured and unstructured repositories. An enterprise search solution should […]

­­Speed ML development using SageMaker Feature Store and Apache Iceberg offline store compaction

Today, companies are establishing feature stores to provide a central repository to scale ML development across business units and data science teams. As feature data grows in size and complexity, data scientists need to be able to efficiently query these feature stores to extract datasets for experimentation, model training, and batch scoring. Amazon SageMaker Feature […]