AWS Machine Learning Blog

Category: Learning Levels

Transfer learning for TensorFlow object detection models in Amazon SageMaker

July 2023: You can also use the newly launched JumpStart APIs, an extension of the SageMaker Python SDK. These APIs allow you to programmatically deploy and fine-tune a vast selection of JumpStart-supported pre-trained models on your own datasets. Please refer to Amazon SageMaker JumpStart models and algorithms now available via API for more details on how […]

Transfer learning for TensorFlow text classification models in Amazon SageMaker

July 2023: You can also use the newly launched JumpStart APIs, an extension of the SageMaker Python SDK. These APIs allow you to programmatically deploy and fine-tune a vast selection of JumpStart-supported pre-trained models on your own datasets. Please refer to Amazon SageMaker JumpStart models and algorithms now available via API for more details on how […]

Featured image for machine learning blog

Intelligent document processing with AWS AI services in the insurance industry: Part 1

The goal of intelligent document processing (IDP) is to help your organization make faster and more accurate decisions by applying AI to process your paperwork. This two-part series highlights the AWS AI technologies that insurance companies can use to speed up their business processes. These AI technologies can be used across insurance use cases such […]

Improve data extraction and document processing with Amazon Textract

Intelligent document processing (IDP) has seen widespread adoption across enterprise and government organizations. Gartner estimates the IDP market will grow more than 100% year over year, and is projected to reach $4.8 billion in 2022. IDP helps transform structured, semi-structured, and unstructured data from a variety of document formats into actionable information. Processing unstructured data […]

Automated exploratory data analysis and model operationalization framework with a human in the loop

Identifying, collecting, and transforming data is the foundation for machine learning (ML). According to a Forbes survey, there is widespread consensus among ML practitioners that data preparation accounts for approximately 80% of the time spent in developing a viable ML model. In addition, many of our customers face several challenges during the model operationalization phase […]

Move Amazon SageMaker Autopilot ML models from experimentation to production using Amazon SageMaker Pipelines

Amazon SageMaker Autopilot automatically builds, trains, and tunes the best custom machine learning (ML) models based on your data. It’s an automated machine learning (AutoML) solution that eliminates the heavy lifting of handwritten ML models that requires ML expertise. Data scientists need to only provide a tabular dataset and select the target column to predict, […]

Model hosting patterns in Amazon SageMaker, Part 5: Cost efficient ML inference with multi-framework models on Amazon SageMaker 

Machine learning (ML) has proven to be one of the most successful and widespread applications of technology, affecting a wide range of industries and impacting billions of users every day. With this rapid adoption of ML into every industry, companies are facing challenges in supporting low-latency predictions and with high availability while maximizing resource utilization […]

Train gigantic models with near-linear scaling using sharded data parallelism on Amazon SageMaker

In the pursuit of superior accuracy, deep learning models in areas such as natural language processing and computer vision have significantly grown in size in the past few years, frequently counted in tens to hundreds of billions of parameters. Training these gigantic models is challenging and requires complex distribution strategies. Data scientists and machine learning […]

Reduce food waste to improve sustainability and financial results in retail with Amazon Forecast

With environmental, social, and governance (ESG) initiatives becoming more important for companies, our customer, one of Greater China region’s top convenience store chains, has been seeking a solution to reduce food waste (currently over $3.5 million USD per year). Doing so will allow them to not only realize substantial operating savings, but also support corporate […]

Amazon SageMaker Automatic Model Tuning now supports grid search

Today Amazon SageMaker announced the support of Grid search for automatic model tuning, providing users with an additional strategy to find the best hyperparameter configuration for your model. Amazon SageMaker automatic model tuning finds the best version of a model by running many training jobs on your dataset using a range of hyperparameters that you […]