AWS Machine Learning Blog

Category: Management Tools

AWS Cloud technology for near-real-time cardiac anomaly detection using data from wearable devices

Cardiovascular diseases (CVDs) are the number one cause of death globally: more people die each year from CVDs than from any other cause. The COVID-19 pandemic made organizations change healthcare delivery to reduce staff contact with sick people and the overall pressure on the healthcare system. This technology enables organizations to deliver telehealth solutions, which […]

Automate your time series forecasting in Snowflake using Amazon Forecast

This post is a joint collaboration with Andries Engelbrecht and James Sun of Snowflake, Inc. The cloud computing revolution has enabled businesses to capture and retain corporate and organizational data without capacity planning or data retention constraints. Now, with diverse and vast reserves of longitudinal data, companies are increasingly able to find novel and impactful […]

Build an AI-powered virtual agent for Genesys Cloud using QnABot and Amazon Lex

The rise of artificial intelligence technologies enables organizations to adopt and improve self-service capabilities in contact center operations to create a more proactive, timely, and effective customer experience. Voice bots, or conversational interactive voice response systems (IVR), use natural language processing (NLP) to understand customers’ questions and provide relevant answers. Businesses can automate responses to […]

Introducing self-service quota management and higher default service quotas for Amazon Textract

Today, we’re excited to announce self-service quota management support for Amazon Textract via the AWS Service Quotas console, and higher default service quotas in select AWS Regions. Customers tell us they need quick turnaround times to process their requests for quota increases and visibility into their service quotas so they may continue to scale their […]

Tips to improve your Amazon Rekognition Custom Labels model

In this post, we discuss best practices to improve the performance of your computer vision models using Amazon Rekognition Custom Labels. Rekognition Custom Labels is a fully managed service to build custom computer vision models for image classification and object detection use cases. Rekognition Custom Labels builds off of the pre-trained models in Amazon Rekognition, which […]

Enable business analysts to access Amazon SageMaker Canvas without using the AWS Management Console with AWS SSO

April 2024: This post was reviewed and updated for accuracy. IT has evolved in recent years: thanks to low-code and no-code (LCNC) technologies, an increasing number of people with varying backgrounds require access to tools and platforms that were previously a prerogative to more tech-savvy individuals in the company, such as engineers or developers. Out […]

Automate vending Amazon SageMaker notebooks with Amazon EventBridge and AWS Lambda

Having an environment capable of delivering Amazon SageMaker notebook instances quickly allows data scientists and business analysts to efficiently respond to organizational needs. Data is the lifeblood of an organization, and analyzing that data efficiently provides useful insights for businesses. A common issue that organizations encounter is creating an automated pattern that enables development teams […]

Part 2: How NatWest Group built a secure, compliant, self-service MLOps platform using AWS Service Catalog and Amazon SageMaker

This is the second post of a four-part series detailing how NatWest Group, a major financial services institution, partnered with AWS Professional Services to build a new machine learning operations (MLOps) platform. In this post, we share how the NatWest Group utilized AWS to enable the self-service deployment of their standardized, secure, and compliant MLOps […]

Improve your data science workflow with a multi-branch training MLOps pipeline using AWS

In this post, you will learn how to create a multi-branch training MLOps continuous integration and continuous delivery (CI/CD) pipeline using AWS CodePipeline and AWS CodeCommit, in addition to Jenkins and GitHub. I discuss the concept of experiment branches, where data scientists can work in parallel and eventually merge their experiment back into the main […]

Create a cross-account machine learning training and deployment environment with AWS Code Pipeline

A continuous integration and continuous delivery (CI/CD) pipeline helps you automate steps in your machine learning (ML) applications such as data ingestion, data preparation, feature engineering, modeling training, and model deployment. A pipeline across multiple AWS accounts improves security, agility, and resilience because an AWS account provides a natural security and access boundary for your […]