Amazon Web Services ブログ

サンプルデータを使用して Amazon QuickSight で試用する 10 の視覚化

Amazon QuickSight を使って視覚化を構築し、ビジネスに関する詳細な情報に素早くアクセスできる方法をまだ知らないなら、ぜひこれを読んでみてください。この記事では、サンプルデータセットを使用して、よくあるシナリオをいくつか紹介しながら、データを接続して高度な分析を行い、ウェブブラウザやモバイルデバイスから結果にアクセスする方法についての概要を解説します。 次の視覚化は、下のリンクで公開されているデータセットから作成されています。その前に、サポートするデータソース、ファイル形式、および典型的な QuickSight ワークフローを見ながら、視覚化をいろいろ構築してみましょう。 Amazon QuickSight はどのデータソースをサポートしていますか? この記事の公開時には、次のデータメソッドを使用できます。 次のような AWS データソースに接続します。 Amazon RDS Amazon Aurora Amazon Redshift Amazon Athena Amazon S3 Excel スプレッドシートまたはフラットファイル (CSV、TSV、CLF、および ELF) をアップロードする Teradata、SQL Server、MySQL、PostgreSQL などのオンプレミスデータベースに接続する Salesforce や Snowflake などの SaaS アプリケーションからデータをインポートする Spark や Presto のようなビッグデータ処理エンジンを使用する このリストは現在も増え続けています。詳細については、「サポートされているデータソース」を参照してください。 瞬時に答える SPICE は Amazon QuickSight の超高速並列インメモリ計算エンジンで、アドホックなデータの視覚化用に特別に設計されています。SPICE は、高可用性のために設計されたシステムにデータを保存します。このシステムでは、削除するまで保存されます。直接データベースクエリを使用するのではなく、SPICE にデータをインポートして、データベースデータセットのパフォーマンスを向上します。データセットに必要な SPICE の容量を計算するには、「SPICE 容量の管理」を参照してください。 一般的な Amazon […]

Read More

Amazon Polly が HIPAA に準拠

Amazon Polly は、文章をリアルな音声に変換できるサービスです。話すことができるアプリケーションを構築可能な、まったく新しいカテゴリの音声対応製品です。Amazon Polly API は、AWS HIPAA 準拠サービスです。 何十種類もの生き生きとした音声を多数の言語に変換でき、最適な音声を選択して、音声対応アプリケーションを構築できます。例として、英国最大の診断およびヘルスケアソリューション提供企業 Inhealthcare 社 の事例があります。同社は Amazon Polly を使用して、英国の全人口向けに遠隔ホームモニタリングをサポートする、デジタルインフラストラクチャを構築しました。この事例では、サービスを大規模に展開するために自動電話システムが最適なコミュニケーションチャネルとして使われています。なぜならば、インターネットにアクセスできなかったり、スマートフォンを持っていなくても、ほぼすべての人がサービスを使用できるからです。また多くの高齢者の方々にとって、従来の電話機は使い勝手がよく、安心して使えます。Inhealthcare 社が患者様のケアを提供するために、どのように Amazon Polly を使用しているのかについて、詳しくはブログ投稿を参照してください。 HIPAA 準拠は、Amazon Polly を利用できる、すべての AWS リージョンに適用されます。PHI を保存、処理、転送するように AWS HIPAA 準拠サービスを設定する方法に関する情報およびベストプラクティスについては、アマゾン ウェブ サービスの HIPAA セキュリティおよびコンプライアンスのためのアーキテクチャ設計ホワイトペーパーを参照してください。 AWS Business Associate Addendum (BAA) をご使用の場合は、Amazon Polly で医療情報 (PHI) が含まれているテキストから音声を作成することができます。AWS BAA を使用していない場合や AWS HIPAA で規制されているワークロードの実行に関するその他のご質問があれば、お問い合わせください。 今回のブログ投稿者について Binny Peh は AWS Machine Learning […]

Read More

Amazon より 新しい .BOT gTLD が誕生

本日、 Amazon の新規汎用最上位ドメイン (gTLD) 、 .BOT の公開をお知らせします。.BOTドメイン をお使いいただくと、ボットにIDやポータルを提供することができます。フィットネスボット、 slack ボット、 e コマースボットなど、 .BOT のドメインを通じて全機能に簡単にアクセス可能です。「ボット」という言葉は .COM TLD 内で2016年、4番目に登録数の多いドメインキーワードであり、ひと月に6000以上の登録がありました。.BOT ドメインではお客様のボットへのインターネット ID の付与、そして SEO パフォーマンスの向上をご提供します。 本記事の執筆時点では .BOT ドメインの価格は $75 〜、 Amazon Lex 、Botkit Studio 、 Dialogflow 、 Gupshup 、 Microsoft Bot Framework 、 Pandorabots のようなサポートツールを使って検証し公開する必要があります。今後さらに多くのツールのサポートを予定していますが、お気に入りのボットフレームワークがサポート対象外の場合はお気軽にご連絡ください。contactbot@amazon.com ここからは、whereml.bot のポッドを例にドメインの登録とプロビジョニングの流れを紹介します。その後でホストゾーンとして Amazon Route 53 にドメインを設定する手順を見ていきましょう。では始めましょう。 .BOT ドメインの登録 まず https://amazonregistry.com/bot で新規ドメインを入力し、magnifying classをクリックして入力したドメインが利用可能かどうかを確認します。利用可能であれば、登録ウィザードに進みます。 次に、ボットの認証方法を選ぶ画面になります。私は全てのボットを […]

Read More

[AWS Black Belt Online Seminar] AWS で構築するデータレイク基盤のアーキテクチャ 資料及び QA 公開

こんにちは、マーケティングの鬼形です。 先日(2018/4/24)開催しました AWS Black Belt Online Seminar「AWS で構築するデータレイク基盤のアーキテクチャ」の資料を公開致しました。当日、参加者の皆様から頂いた QA の一部についても共有しております。

Read More

AWS KMS と独自の CMK を使用して Amazon Aurora を暗号化する方法

リレーショナルデータベースエンジンを選ぶとき、お客様は、管理、性能、信頼性、自動化など、さまざまな面に注目しますが、最近では、さらに保存されたデータをネイティブに暗号化する機能にも注目が集まっています。Amazon Aurora は、可用性と拡張性が高い最適なリレーショナルデータベースエンジンで、MySQL と PostgreSQL の両方をサポートしています。Amazon Aurora は、保存されたデータのネイティブ暗号化をサポートしており、AWS Key Management Service (AWS KMS) を使用して暗号化用のキーの保管と管理をします。 AWS KMS を使用して暗号化キーの作成、保管、管理をすることができます。これはハードウェアセキュリティモジュール (HSM) で強化されており、確実にキーを安全に保管できます。 AWS KMS は、次のようなさまざまなコンプライアンススキーマに準拠しています。 連邦情報処理標準 (FIPS) 140-2 System and Organization Controls (SOC) 1、2、3 ペイメントカード業界データセキュリティ基準 (PCI-DSS) レベル 1 Federal Risk and Authorization Management Program (FedRAMP) 医療保険の相互運用性と説明責任に関する法令 (HIPAA) AWS KMS の特長は、お客様管理のカスタマーマスターキー、すなわちCMKです。AWS KMS では CMK を使用することで、独自のポリシーに基づくキーのローテーション、キーの削除、KMS ポリシーと IAM ポリシーによるキーへのアクセス制御などの機能が得られます。AWS KMS […]

Read More

Amazon Rekognition Video と Amazon Kinesis Video Streams を使用してサーバーレスのビデオ分析環境を構築し、ライブフィードをベースにした顔分析を簡単に実行する

ビデオを撮影し、保存するとろこまではごく一般的に行われていますが、そのビデオに主要人物、場所、またはものが映り込んでいるかどうかは、だれかが画面の前に座って、そのビデオを見る時間がとれるまで分析されることはありませんでした。  深層学習を活用した使い勝手の良いサービスを使用して、ビデオを分析するプロセスを合理化し、自動化できるとしたらどうでしょう? Amazon Rekognition Video は、人物を追跡したり、活動を検出したり、物体、有名人、および不適切なコンテンツを認識したりする、深層学習を使用した動画分析サービスです。Amazon Rekognition Video は、ライブストリーム内の顔を検出して認識できます。Rekognition Video は、Amazon S3 に保存されている既存のビデオを分析し、活動、人物と顔、物体を示すラベルをタイムスタンプ付きで返すため、シーンを簡単に見つけることができます。Amazon Kinesis Video Streams からライブビデオの顔認識を実行することも可能です。Amazon Kinesis Video Streams を使用することで、分析、機械学習 (ML)、およびその他の処理のために、接続されたデバイスから AWS へ動画を簡単かつ安全にストリーミングできるようになります。 今回のブログ記事では、自分で顔認識機能をテストする方法をご紹介します。この機能を利用することで、ライブビデオフィードから、既知の個人の顔情報を集めた特定の顔情報コレクションに一致する顔がそのビデオに含まれているかを判別することもできます。 これらの例としては、要人、参考人、会社や組織の特定の人々、または個々のユースケースで意味をなすあらゆる種類の顔情報コレクションが挙げられます。 サーバーレスアーキテクチャの概要 以下はこのブログ記事でご紹介するビデオ分析フローを図式化したものです。このコレクションでは単一の顔を使用しますが、容易に数百万の顔情報コレクションに拡張することができます。 このブログ記事では、Amazon Kinesis Video Stream にライブフィードを送信するためにあなたのノート PC のウェブカムを使用します。 そこから Amazon Rekognition Video のプロセッサがフィードを分析し、私たちの作成したコレクションと比較します。  一致した結果は、AWS Lambda と Amazon Simple Notification Service (Amazon SNS) との統合によりメールで私たちに送信されます。 結果を理解する 次に、ライブのビデオストリームで顔情報が特定されたときに、Amazon Rekognition Video からの結果を見てみます。この結果はウェブカムのフィードに既知または未知の顔が現れたときに、Amazon […]

Read More

AWS サポート – 最初の 10 年

AWS ではちょうど 10 年前に、Amazon EC2、Amazon S3、および Amazon SQS に焦点を当てたゴールドプランとシルバープランで AWS サポートを開始しました。シアトルの小さなチームが支えるこれらの開始当初のサポート提供から始まった AWS サポートは、現在 60 を超える場所で働く何千人もの人々で成り立っています。 これまでを振り返って 長い年月を経て、これらのサポートは AWS のますます多様化するカスタマーベースのニーズを満たすために成熟し、進化しました。AWS は、一番初めの実験から、ミッションクリティカルなワークロードとアプリケーションをデプロイするときまで、クラウド採用の旅におけるあらゆる段階でお客様をサポートすることを目標としています。 私たちは、AWS のサポートモデルを有益な先を見越したものとするために尽力してきました。AWS では、お客様がセキュアで堅固、かつ信頼できるシステムを構築するために役立つツール、アラート、および知識を提供するために最善を尽くしています。以下は、この目標に向けた最近の取り組みの一部です。 Trusted Advisor S3 バケットポリシーチェック – AWS Trusted Advisor は 5 つのカテゴリーのチェックを提供し、セキュリティとパフォーマンスを向上させるように設計された推奨事項を提供します。AWS は今年の初めに、S3 バケットアクセス権限チェックが無料になり、すべての AWS ユーザーにご利用いただけるようになったことを発表しました。AWS サポートのビジネスまたはプロフェッショナルレベルに加入されている場合は、Amazon CloudWatch Events を使ってこのチェック (およびその他多くの事柄) を監視できます。これは、人手を介さずにバケットを監視してセキュア化するために使用できます。 Personal Health Dashboard – このツールは、AWS でお客様に影響を与える可能性があるイベントが発生しているときにアラートとガイダンスを提供します。お使いの AWS リソースの基礎となる AWS のサービスのパフォーマンスと可用性に関するパーソナライズされたビューを見ることができます。また、必要に応じて自動フェイルオーバーと修復を開始できるように、Amazon CloudWatch […]

Read More

AWS Developer Toolsを使用したサーバレスなAWS Glue ETLアプリケーションの継続的インテグレーションとデリバリの実装

大規模なデータおよびデータレイクのワークロード用にサーバーレスETL(抽出、変換およびロード)アプリケーションを開発するためにAWS Glueはますます普及しています。 ETLアプリケーションをクラウドベースのサーバーレスETLアーキテクチャに変換する組織は、ソースコードからビルド、デプロイ、プロダクトデリバリまで、シームレスでエンドツーエンドの継続的なインテグレーションおよび継続的なデリバリ(CI / CD)パイプラインが必要です。優れたCI / CDパイプラインを持つことで、組織はプロダクションリリース前にバグを発見し、より頻繁にアップデートを提供することができます。また、開発者が高品質のコードを書いたり、ETLのジョブリリース管理プロセスを自動化したり、リスクを軽減したりするのに役立ちます。 AWS Glueは、フルマネージドのデータカタログとETLのサービスです。これは、データの発見、変換、およびジョブスケジューリングなどの困難で時間のかかる作業を簡素化し自動化します。 AWS Glueは、データソースをクロールし、CSV、Apache Parquet、JSONなどの一般的なデータフォーマットとデータタイプ用に事前に作成された分類子を使用してデータカタログを構築します。 AWS Glueを使用してETLアプリケーションを開発する場合、CI / CDの次のような課題に直面する場合があります。 ユニットテストによる繰り返しの開発 継続的なインテグレーションとビルド ETLパイプラインをテスト環境にプッシュする ETLパイプラインをプロダクション環境にプッシュする 実データを使用したETLアプリケーションのテスト(live test) データの調査と検証 この記事では、AWS Developer Tools(AWS CodePipeline、AWS CodeCommit、AWS CodeBuildなど)とAWS CloudFormationがサポートするサーバーレスAWS Glue ETLアプリケーションのCI / CDパイプラインを実装するソリューションを紹介します。 ソリューションの概要 次の図は、ワークフローのパイプラインを示しています。 このソリューションでは、AWS CodePipelineを使用して、ETLアプリケーションのソースコードのテストおよびステージへのデプロイを制御および自動化することができます。 このソリューションは、以下のステージを含むパイプラインで構成されています。 1.)Source Control:このステージでは、デプロイするETLジョブのAWS Glue ETLジョブソースコードとAWS CloudFormationテンプレートファイルの両方がバージョン管理にコミットされます。 バージョン管理にAWS CodeCommitを使用することにしました。 ETLジョブソースコードとAWS CloudFormationテンプレートを取得するには、gluedemoetl.zipファイルをダウンロードします。 このソリューションは、以前の記事、AWS Glue と Amazon S3 を使用してデータレイクの基礎を構築するに基づいて開発されました。 2.)LiveTest:このステージでは、AWS […]

Read More

Amazon Aurora での Cloudability のパフォーマンス向上、チューニングの簡素化、コスト削減について

Cloudability は、クラウドのコスト管理プラットフォームであり、企業が既知のクラウド財務と完全なアカウンタビリティの実行を可能にします。プラットフォームでは、殺到する請求書および利用データポイントを収集します。各クラウドベンダーの 275,000 以上のサービスとオプション、またクラウドプロバイダーごとに毎年 1,000 以上の新しいサービスが展開されており、1 リソースあたり 3,300 万件にものぼります。 分析、自動化、および Machine Learning を使用して、 Cloudability の True Cost Engine は、企業での割引、クレジット、コミットメント、予約、配分、および償却に基づいてこのデータを補強し、変換します。 Cloudability’ の TrueCost Explorer では、請求データを分析し、使用状況がどのようにコストに変換されるかを理解します。 Cloudability により、より望ましいリザーブドインスタンス (RI) の決定が可能になります。リザーブドインスタンスプランナーを使って、活用されていない RI の計画、購入、変更、および識別が可能です。 コスト、使用量、および RI データを取り込んだ後、Cloudability は、使用時間消費と RI カバレッジ周りのユーザーの可視性における追跡と改善を容易にします。 状況 2017年春、我々は True Cost Engine の新しい予測モデルを公開するプロジェクトに着手しました。AWS で実行するする顧客にさらに高いコスト効率を提供する予測モデルを開発することがこのプロジェクトの目標でした。 このような分析をサポートするためには、パフォーマンス、スケーラビリティ、費用対効果に優れ、そしてメンテナンスやチューニングが容易なデータベースが必要でした。この記事では、これらの要件を満たすための最良の選択である PostgreSQL との互換性を備えた Amazon Aurora をどのように見出したかを示します。 プロジェクト 昨年初め、Cloudability のデータサイエンスチームは、ペタバイトの顧客コスト最適化データを使用して新しい予測モデルを開発することを決めました。これらのモデルは、アカウントの過去のスポット料金の動向、顧客の RI ポートフォリオの欠損値、インスタンスの使用パターン、および顧客が指定した料金表の調整などを考慮に入れます。 このモデルは、過去の […]

Read More