AWS Big Data Blog

Category: Analytics*

Real-time in-memory OLTP and Analytics with Apache Ignite on AWS

Babu Elumalai is a Solutions Architect with AWS Organizations are generating tremendous amounts of data, and they increasingly need tools and systems that help them use this data to make decisions. The data has both immediate value (for example, trying to understand how a new promotion is performing in real time) and historic value (trying […]

Read More

Process Encrypted Data in Amazon EMR with Amazon S3 and AWS KMS

Russell Nash is a Solutions Architect with AWS. Amo Abeyaratne, a Big Data consultant with AWS, also contributed to this post. One of the most powerful features of Amazon EMR is the close integration with Amazon S3 through EMRFS. This allows you to take advantage of many S3 features, including support for S3 client-side and […]

Read More

Sharpen your Skill Set with Apache Spark on the AWS Big Data Blog

The AWS Big Data Blog has a large community of authors who are passionate about Apache Spark and who regularly publish content that helps customers use Spark to build real-world solutions. You’ll see content on a variety of topics, including deep-dives on Spark’s internals, building Spark Streaming applications, creating machine learning pipelines using MLlib, and ways […]

Read More

Combine NoSQL and Massively Parallel Analytics Using Apache HBase and Apache Hive on Amazon EMR

Ben Snively is a Solutions Architect with AWS Jon Fritz, a Senior Product Manager for Amazon EMR, co-authored this post With today’s launch of Amazon EMR release 4.6, you can now quickly and easily provision a cluster with Apache HBase 1.2. Apache HBase is a massively scalable, distributed big data store in the Apache Hadoop ecosystem. It is […]

Read More

Using CombineInputFormat to Combat Hadoop’s Small Files Problem

James Norvell is a Big Data Cloud Support Engineer for AWS Many Amazon EMR customers have architectures that track events and streams and store data in S3. This frequently leads to many small files. It’s now well known that Hadoop doesn’t deal well with small files. This issue can be amplified when migrating from Hadoop […]

Read More

Exploring Geospatial Intelligence using SparkR on Amazon EMR

Gopal Wunnava is a Senior Consultant with AWS Professional Services The number of data sources that use location, such as smartphones and sensory devices used in IoT (Internet of things), is expanding rapidly. This explosion has increased demand for analyzing spatial data. Geospatial intelligence (GEOINT) allows you to analyze data that has geographical or spatial […]

Read More

Will Spark Power the Data behind Precision Medicine?

Christopher Crosbie is a Healthcare and Life Science Solutions Architect with Amazon Web Services. This post was co-authored by Ujjwal Ratan, a Solutions Architect with Amazon Web Services. ——————————— “And that’s the promise of precision medicine — delivering the right treatments, at the right time, every time to the right person.“ (President Obama, 2015 State […]

Read More

Crunching Statistics at Scale with SparkR on Amazon EMR

Christopher Crosbie is a Healthcare and Life Science Solutions Architect with Amazon Web Services. This post is co-authored by Gopal Wunnava, a Senior Consultant with AWS Professional Services. SparkR is an R package that allows you to integrate complex statistical analysis with large datasets. In this blog post, we introduce you running R with the […]

Read More

Anomaly Detection Using PySpark, Hive, and Hue on Amazon EMR

Veronika Megler, Ph.D., is a Senior Consultant with AWS Professional Services We are surrounded by more and more sensors – some of which we’re not even consciously aware. As sensors become cheaper and easier to connect, they create an increasing flood of data that’s getting cheaper and easier to store and process. However, sensor readings […]

Read More

Import Zeppelin notes from GitHub or JSON in Zeppelin 0.5.6 on Amazon EMR

Jonathan Fritz is a Senior Product Manager for Amazon EMR Many Amazon EMR customers use Zeppelin to create interactive notebooks to run workloads with Spark using Scala, Python, and SQL. These customers have found Amazon EMR to be a great platform for running Zeppelin because of strong integration with other AWS services and the ability […]

Read More