AWS Big Data Blog

Category: Analytics

Enable federation to multiple Amazon QuickSight accounts with Microsoft Azure Active Directory

Amazon QuickSight is a scalable, serverless, embeddable, machine learning (ML)-powered business intelligence (BI) service built for the cloud that supports identity federation in both Standard and Enterprise editions. Organizations are working towards centralizing their identity and access strategy across all of their applications, including on-premises, third-party, and applications on AWS. Many organizations use Microsoft Azure […]

Create a secure data lake by masking, encrypting data, and enabling fine-grained access with AWS Lake Formation

You can build data lakes with millions of objects on Amazon Simple Storage Service (Amazon S3) and use AWS native analytics and machine learning (ML) services to process, analyze, and extract business insights. You can use a combination of our purpose-built databases and analytics services like Amazon EMR, Amazon OpenSearch Service, and Amazon Redshift as […]

Design a data mesh architecture using AWS Lake Formation and AWS Glue

  Organizations of all sizes have recognized that data is one of the key enablers to increase and sustain innovation, and drive value for their customers and business units. They are eagerly modernizing traditional data platforms with cloud-native technologies that are highly scalable, feature-rich, and cost-effective. As you look to make business decisions driven by […]

Case-insensitive collation support for string processing in Amazon Redshift

Amazon Redshift is a fast, fully managed, cloud-native data warehouse. Tens of thousands of customers have successfully migrated their workloads to Amazon Redshift. We hear from customers that they need case-insensitive collation for strings in Amazon Redshift in order to maintain the same functionality and meet their performance goals when they migrate their existing workloads […]

Migrate Amazon QuickSight across AWS accounts

This blog post is co-written by Glen Douglas and Alex Savchenko from Integrationworx. Enterprises that follow an Agile software development lifecycle (SDLC) process for their dashboard development and deployment typically have distinct environments for development, staging, QA and test, and production. One recommended approach when developing using AWS is to create multiple AWS accounts corresponding […]

Get started with Flink SQL APIs in Amazon Kinesis Data Analytics Studio

Before the release of Amazon Kinesis Data Analytics Studio, customers relied on Amazon Kinesis Data Analytics for SQL on Amazon Kinesis Data Streams. With the release of Kinesis Data Analytics Studio, data engineers and analysts can use an Apache Zeppelin notebook within Studio to query streaming data interactively from a variety of sources, like Kinesis […]

Power operational insights with Amazon QuickSight

Organizations need a consolidated view of their applications, but typically application health status is siloed: end-users complain on social media platforms, operational data coming from application logs is stored on complex monitoring tools, formal ticketing systems track reported issues, and synthetic monitoring data is only available for the tool administrators. In this post, we show […]

Automate Amazon ES synonym file updates

September 8, 2021: Amazon Elasticsearch Service has been renamed to Amazon OpenSearch Service. See details. Search engines provide the means to retrieve relevant content from a collection of content. However, this can be challenging if certain exact words aren’t entered. You need to find the right item from a catalog of products, or the correct […]

Build and optimize real-time stream processing pipeline with Amazon Kinesis Data Analytics for Apache Flink, Part 2

In Part 1 of this series, you learned how to calibrate Amazon Kinesis Data Streams stream and Apache Flink application deployed in Amazon Kinesis Data Analytics for tuning Kinesis Processing Units (KPUs) to achieve higher performance. Although the collection, processing, and analysis of spiky data stream in real time is crucial, reacting to the spiky […]

Build and optimize a real-time stream processing pipeline with Amazon Kinesis Data Analytics for Apache Flink, Part 1

In real-time stream processing, it becomes critical to collect, process, and analyze high-velocity real-time data to provide timely insights and react quickly to new information. Streaming data velocity could be unpredictable, and volume could spike based on user demand at a given time of day. Real-time analysis needs to handle the data spike, because any […]