AWS Big Data Blog
Category: Learning Levels
Resolve private DNS hostnames for Amazon MSK Connect
Amazon MSK Connect is a feature of Amazon Managed Streaming for Apache Kafka (Amazon MSK) that offers a fully managed Apache Kafka Connect environment on AWS. With MSK Connect, you can deploy fully managed connectors built for Kafka Connect that move data into or pull data from popular data stores like Amazon S3 and Amazon […]
SmugMug’s durable search pipelines for Amazon OpenSearch Service
SmugMug operates two very large online photo platforms, SmugMug and Flickr, enabling more than 100 million customers to safely store, search, share, and sell tens of billions of photos. Customers uploading and searching through decades of photos helped turn search into critical infrastructure, growing steadily since SmugMug first used Amazon CloudSearch in 2012, followed by […]
Load data incrementally from transactional data lakes to data warehouses
Data lakes and data warehouses are two of the most important data storage and management technologies in a modern data architecture. Data lakes store all of an organization’s data, regardless of its format or structure. An open table format such as Apache Hudi, Delta Lake, or Apache Iceberg is widely used to build data lakes […]
Enhance your security posture by storing Amazon Redshift admin credentials without human intervention using AWS Secrets Manager integration
Amazon Redshift is a fully managed, petabyte-scale data warehouse service in the cloud. You can start with just a few hundred gigabytes of data and scale to a petabyte or more. Today, tens of thousands of AWS customers—from Fortune 500 companies, startups, and everything in between—use Amazon Redshift to run mission-critical business intelligence (BI) dashboards, […]
Run Apache Hive workloads using Spark SQL with Amazon EMR on EKS
Apache Hive is a distributed, fault-tolerant data warehouse system that enables analytics at a massive scale. Using Spark SQL to run Hive workloads provides not only the simplicity of SQL-like queries but also taps into the exceptional speed and performance provided by Spark. Spark SQL is an Apache Spark module for structured data processing. One […]
Unleash the power of Snapshot Management to take automated snapshots using Amazon OpenSearch Service
Snapshot Management helps you create point-in-time backups of your domain using OpenSearch Dashboards, including both data and configuration settings (for visualizations and dashboards). You can use these snapshots to restore your cluster to a specific state, recover from potential failures, and even clone environments for testing or development purposes. In this post, we share how to use Snapshot Management to take automated snapshots using OpenSearch Service.
Processing large records with Amazon Kinesis Data Streams
In this post, we show you some different options for handling large records within Kinesis Data Streams and the benefits and disadvantages of each approach. We provide some sample code for each option to help you get started with any of these approaches with your own workloads.
Using AWS AppSync and AWS Lake Formation to access a secure data lake through a GraphQL API
Data lakes have been gaining popularity for storing vast amounts of data from diverse sources in a scalable and cost-effective way. As the number of data consumers grows, data lake administrators often need to implement fine-grained access controls for different user profiles. They might need to restrict access to certain tables or columns depending on […]
Simplify data transfer: Google BigQuery to Amazon S3 using Amazon AppFlow
In today’s data-driven world, the ability to effortlessly move and analyze data across diverse platforms is essential. Amazon AppFlow, a fully managed data integration service, has been at the forefront of streamlining data transfer between AWS services, software as a service (SaaS) applications, and now Google BigQuery. In this blog post, you explore the new Google BigQuery connector in Amazon AppFlow and discover how it simplifies the process of transferring data from Google’s data warehouse to Amazon Simple Storage Service (Amazon S3), providing significant benefits for data professionals and organizations, including the democratization of multi-cloud data access.
Define per-team resource limits for big data workloads using Amazon EMR Serverless
Customers face a challenge when distributing cloud resources between different teams running workloads such as development, testing, or production. The resource distribution challenge also occurs when you have different line-of-business users. The objective is not only to ensure sufficient resources be consistently available to production workloads and critical teams, but also to prevent adhoc jobs […]