AWS Big Data Blog

Harmonize, Search, and Analyze Loosely Coupled Datasets on AWS

You have come up with an exciting hypothesis, and now you are keen to find and analyze as much data as possible to prove (or refute) it. There are many datasets that might be applicable, but they have been created at different times by different people and don’t conform to any common standard. They use […]

Read More

Scheduled Refresh for SPICE Data Sets on Amazon QuickSight

Jose Kunnackal is a Senior Product Manager for Amazon Quicksight This blog post has been translated into Japanese. In November 2016, we launched Amazon QuickSight, a cloud-powered, business analytics service that lets you quickly and easily visualize your data. QuickSight uses SPICE (Super-fast, Parallel, In-Memory Calculation Engine), a fully managed data store that enables blazing […]

Read More

Create Tables in Amazon Athena from Nested JSON and Mappings Using JSONSerDe

Most systems use Java Script Object Notation (JSON) to log event information. Although it’s efficient and flexible, deriving information from JSON is difficult. In this post, you will use the tightly coupled integration of Amazon Kinesis Firehose for log delivery, Amazon S3 for log storage, and Amazon Athena with JSONSerDe to run SQL queries against these logs without […]

Read More

AWS Big Data is Coming to HIMSS!

The AWS Big Data team is coming to HIMSS, the industry-leading conference for professionals in the field of healthcare technology. The conference brings together more than 40,000 health IT professionals, clinicians, administrators, and vendors to talk about the latest innovations in health technology. Because transitioning healthcare to the cloud is at the forefront of this […]

Read More

Migrate External Table Definitions from a Hive Metastore to Amazon Athena

For customers who use Hive external tables on Amazon EMR, or any flavor of Hadoop, a key challenge is how to effectively migrate an existing Hive metastore to Amazon Athena, an interactive query service that directly analyzes data stored in Amazon S3. With Athena, there are no clusters to manage and tune, and no infrastructure to […]

Read More

Implement Serverless Log Analytics Using Amazon Kinesis Analytics

Applications log a large amount of data that—when analyzed in real time—provides significant insight into your applications. Real-time log analysis can be used to ensure security compliance, troubleshoot operation events, identify application usage patterns, and much more. Ingesting and analyzing this data in real time can be accomplished by using a variety of open source […]

Read More

Month in Review: January 2017

Another month of big data solutions on the Big Data Blog! Take a look at our summaries below and learn, comment, and share. Thank you for reading! NEW POSTS Decreasing Game Churn: How Upopa used ironSource Atom and Amazon ML to Engage Users Ever wondered what it takes to keep a user from leaving your […]

Read More

Secure Amazon EMR with Encryption

In the last few years, there has been a rapid rise in enterprises adopting the Apache Hadoop ecosystem for critical workloads that process sensitive or highly confidential data. Due to the highly critical nature of the workloads, the enterprises implement certain organization/industry wide policies and certain regulatory or compliance policies. Such policy requirements are designed […]

Read More

Run Mixed Workloads with Amazon Redshift Workload Management

This blog post has been translated into Japanese.  Mixed workloads run batch and interactive workloads (short-running and long-running queries or reports) concurrently to support business needs or demand. Typically, managing and configuring mixed workloads requires a thorough understanding of access patterns, how the system resources are being used and performance requirements. It’s common for mixed […]

Read More

Converging Data Silos to Amazon Redshift Using AWS DMS

Organizations often grow organically—and so does their data in individual silos. Such systems are often powered by traditional RDBMS systems and they grow orthogonally in size and features. To gain intelligence across heterogeneous data sources, you have to join the data sets. However, this imposes new challenges, as joining data over dblinks or into a […]

Read More