AWS Big Data Blog

Tag: Amazon S3

Provisioning the Intuit Data Lake with Amazon EMR, Amazon SageMaker, and AWS Service Catalog

This post outlines the approach taken by Intuit, though it is important to remember that there are many ways to build a data lake (for example, AWS Lake Formation). We’ll cover the technologies and processes involved in creating the Intuit Data Lake at a high level, including the overall structure and the automation used in provisioning accounts and resources. Watch this space in the future for more detailed blog posts on specific aspects of the system, from the other teams and engineers who worked together to build the Intuit Data Lake.

Read More

Secure your data on Amazon EMR using native EBS and per bucket S3 encryption options

This post provides a detailed walkthrough of two new encryption options to help you secure your EMR cluster that handles sensitive data. The first option is native EBS encryption to encrypt volumes attached to EMR clusters. The second option is an Amazon S3 encryption that allows you to use different encryption modes and customer master keys (CMKs) for individual S3 buckets with Amazon EMR.

Read More

How to export an Amazon DynamoDB table to Amazon S3 using AWS Step Functions and AWS Glue

In this post, I show you how to use AWS Glue’s DynamoDB integration and AWS Step Functions to create a workflow to export your DynamoDB tables to S3 in Parquet. I also show how to create an Athena view for each table’s latest snapshot, giving you a consistent view of your DynamoDB table exports.

Read More

Trigger cross-region replication of pre-existing objects using Amazon S3 inventory, Amazon EMR, and Amazon Athena

In Amazon Simple Storage Service (Amazon S3), you can use cross-region replication (CRR) to copy objects automatically and asynchronously across buckets in different AWS Regions. CRR is a bucket-level configuration, and it can help you meet compliance requirements and minimize latency by keeping copies of your data in different Regions. CRR replicates all objects in […]

Read More

Improve Apache Spark write performance on Apache Parquet formats with the EMRFS S3-optimized committer

The EMRFS S3-optimized committer is a new output committer available for use with Apache Spark jobs as of Amazon EMR 5.19.0. This committer improves performance when writing Apache Parquet files to Amazon S3 using the EMR File System (EMRFS). In this post, we run a performance benchmark to compare this new optimized committer with existing committer […]

Read More

Our data lake story: How Woot.com built a serverless data lake on AWS

In this post, we talk about designing a cloud-native data warehouse as a replacement for our legacy data warehouse built on a relational database. At the beginning of the design process, the simplest solution appeared to be a straightforward lift-and-shift migration from one relational database to another. However, we decided to step back and focus […]

Read More

Best Practices for Running Apache Kafka on AWS

The best practices described in this post are based on our experience in running and operating large-scale Kafka clusters on AWS for more than two years. Our intent for this post is to help AWS customers who are currently running Kafka on AWS, and also customers who are considering migrating on-premises Kafka deployments to AWS.

Read More