AWS Machine Learning Blog
Category: Customer Enablement
Unlocking Japanese LLMs with AWS Trainium: Innovators Showcase from the AWS LLM Development Support Program
Since its launch, the LLM Program has welcomed 15 diverse companies and organizations, each with a unique vision for how to use LLMs to drive progress in their respective industries. The program provides comprehensive support through guidance on securing high-performance compute infrastructure, technical assistance and troubleshooting for distributed training, cloud credits, and support for go-to-market. The program also facilitated collaborative knowledge-sharing sessions, where the leading LLM engineers came together to discuss the technical complexities and commercial considerations of their work. This holistic approach enabled participating organizations to rapidly advance their generative AI capabilities and bring transformative solutions to market. Let’s dive in and explore how these organizations are transforming what’s possible with generative AI on AWS.
Elevate your marketing solutions with Amazon Personalize and generative AI
Generative artificial intelligence is transforming how enterprises do business. Organizations are using AI to improve data-driven decisions, enhance omnichannel experiences, and drive next-generation product development. Enterprises are using generative AI specifically to power their marketing efforts through emails, push notifications, and other outbound communication channels. Gartner predicts that “by 2025, 30% of outbound marketing messages […]
How United Airlines built a cost-efficient Optical Character Recognition active learning pipeline
In this post, we discuss how United Airlines, in collaboration with the Amazon Machine Learning Solutions Lab, build an active learning framework on AWS to automate the processing of passenger documents. “In order to deliver the best flying experience for our passengers and make our internal business process as efficient as possible, we have developed […]
How Carrier predicts HVAC faults using AWS Glue and Amazon SageMaker
In this post, we show how the Carrier and AWS teams applied ML to predict faults across large fleets of equipment using a single model. We first highlight how we use AWS Glue for highly parallel data processing. We then discuss how Amazon SageMaker helps us with feature engineering and building a scalable supervised deep learning model.
AWS performs fine-tuning on a Large Language Model (LLM) to classify toxic speech for a large gaming company
The video gaming industry has an estimated user base of over 3 billion worldwide1. It consists of massive amounts of players virtually interacting with each other every single day. Unfortunately, as in the real world, not all players communicate appropriately and respectfully. In an effort to create and maintain a socially responsible gaming environment, AWS […]
How Light & Wonder built a predictive maintenance solution for gaming machines on AWS
This post is co-written with Aruna Abeyakoon and Denisse Colin from Light and Wonder (L&W). Headquartered in Las Vegas, Light & Wonder, Inc. is the leading cross-platform global game company that provides gambling products and services. Working with AWS, Light & Wonder recently developed an industry-first secure solution, Light & Wonder Connect (LnW Connect), to […]
How RallyPoint and AWS are personalizing job recommendations to help military veterans and service providers transition back into civilian life using Amazon Personalize
This post was co-written with Dave Gowel, CEO of RallyPoint. In his own words, “RallyPoint is an online social and professional network for veterans, service members, family members, caregivers, and other civilian supporters of the US armed forces. With two million members on the platform, the company provides a comfortable place for this deserving population […]
Build Streamlit apps in Amazon SageMaker Studio
Developing web interfaces to interact with a machine learning (ML) model is a tedious task. With Streamlit, developing demo applications for your ML solution is easy. Streamlit is an open-source Python library that makes it easy to create and share web apps for ML and data science. As a data scientist, you may want to […]
Enable fully homomorphic encryption with Amazon SageMaker endpoints for secure, real-time inferencing
This is joint post co-written by Leidos and AWS. Leidos is a FORTUNE 500 science and technology solutions leader working to address some of the world’s toughest challenges in the defense, intelligence, homeland security, civil, and healthcare markets. Leidos has partnered with AWS to develop an approach to privacy-preserving, confidential machine learning (ML) modeling where […]
Using Amazon SageMaker with Point Clouds: Part 1- Ground Truth for 3D labeling
In this two-part series, we demonstrate how to label and train models for 3D object detection tasks. In part 1, we discuss the dataset we’re using, as well as any preprocessing steps, to understand and label data. In part 2, we walk through how to train a model on your dataset and deploy it to […]