Artificial Intelligence

Category: Advanced (300)

Intelligent video and audio Q&A with multilingual support using LLMs on Amazon SageMaker

Digital assets are vital visual representations of products, services, culture, and brand identity for businesses in an increasingly digital world. Digital assets, together with recorded user behavior, can facilitate customer engagement by offering interactive and personalized experiences, allowing companies to connect with their target audience on a deeper level. Efficiently discovering and searching for specific […]

Zero-shot and few-shot prompting for the BloomZ 176B foundation model with the simplified Amazon SageMaker JumpStart SDK

Amazon SageMaker JumpStart is a machine learning (ML) hub offering algorithms, models, and ML solutions. With SageMaker JumpStart, ML practitioners can choose from a growing list of best performing and publicly available foundation models (FMs) such as BLOOM, Llama 2, Falcon-40B, Stable Diffusion, OpenLLaMA, Flan-T5/UL2, or FMs from Cohere and LightOn. In this post and […]

Build production-ready generative AI applications for enterprise search using Haystack pipelines and Amazon SageMaker JumpStart with LLMs

In this post, we showcase how to build an end-to-end generative AI application for enterprise search with Retrieval Augmented Generation (RAG) by using Haystack pipelines and the Falcon-40b-instruct model from Amazon SageMaker JumpStart and Amazon OpenSearch Service.

Build a centralized monitoring and reporting solution for Amazon SageMaker using Amazon CloudWatch

In this post, we present a cross-account observability dashboard that provides a centralized view for monitoring SageMaker user activities and resources across multiple accounts. It allows the end-users and cloud management team to efficiently monitor what ML workloads are running, view the status of these workloads, and trace back different account activities at certain points of time.

Host the Spark UI on Amazon SageMaker Studio

Amazon SageMaker offers several ways to run distributed data processing jobs with Apache Spark, a popular distributed computing framework for big data processing. You can run Spark applications interactively from Amazon SageMaker Studio by connecting SageMaker Studio notebooks and AWS Glue Interactive Sessions to run Spark jobs with a serverless cluster. With interactive sessions, you […]

Use the Amazon SageMaker and Salesforce Data Cloud integration to power your Salesforce apps with AI/ML

This post is co-authored by Daryl Martis, Director of Product, Salesforce Einstein AI. This is the second post in a series discussing the integration of Salesforce Data Cloud and Amazon SageMaker. In Part 1, we show how the Salesforce Data Cloud and Einstein Studio integration with SageMaker allows businesses to access their Salesforce data securely […]

architecture that displays the described process

Scale training and inference of thousands of ML models with Amazon SageMaker

Training and serving thousands of models requires a robust and scalable infrastructure, which is where Amazon SageMaker can help. SageMaker is a fully managed platform that enables developers and data scientists to build, train, and deploy ML models quickly, while also offering the cost-saving benefits of using the AWS Cloud infrastructure. In this post, we explore how you can use SageMaker features, including Amazon SageMaker Processing, SageMaker training jobs, and SageMaker multi-model endpoints (MMEs), to train and serve thousands of models in a cost-effective way. To get started with the described solution, you can refer to the accompanying notebook on GitHub.

Exploring summarization options for Healthcare with Amazon SageMaker

In today’s rapidly evolving healthcare landscape, doctors are faced with vast amounts of clinical data from various sources, such as caregiver notes, electronic health records, and imaging reports. This wealth of information, while essential for patient care, can also be overwhelming and time-consuming for medical professionals to sift through and analyze. Efficiently summarizing and extracting […]

Unlocking creativity: How generative AI and Amazon SageMaker help businesses produce ad creatives for marketing campaigns with AWS

Advertising agencies can use generative AI and text-to-image foundation models to create innovative ad creatives and content. In this post, we demonstrate how you can generate new images from existing base images using Amazon SageMaker, a fully managed service to build, train, and deploy ML models for at scale. With this solution, businesses large and […]

Build protein folding workflows to accelerate drug discovery on Amazon SageMaker

Drug development is a complex and long process that involves screening thousands of drug candidates and using computational or experimental methods to evaluate leads. According to McKinsey, a single drug can take 10 years and cost an average of $2.6 billion to go through disease target identification, drug screening, drug-target validation, and eventual commercial launch. […]