AWS Machine Learning Blog
Upgrade your Amazon Polly voices to neural with one line of code
In 2019, Amazon Polly launched neural text-to-speech (NTTS) voices in US English and UK English. Neural voices use machine learning and provide a richer, more lifelike speech quality. Since the initial launch of NTTS, Amazon Polly has extended its neural offering by adding new voices in US Spanish, Brazilian Portuguese, Australian English, Canadian French, German […]
Extend Amazon SageMaker Pipelines to include custom steps using callback steps
Launched at AWS re:Invent 2020, Amazon SageMaker Pipelines is the first purpose-built, easy-to-use continuous integration and continuous delivery (CI/CD) service for machine learning (ML). With Pipelines, you can create, automate, and manage end-to-end ML workflows at scale. You can extend your pipelines to include steps for tasks performed outside of Amazon SageMaker by taking advantage […]
Enhancing customer service experiences using Conversational AI: Power your contact center with Amazon Lex and Genesys Cloud
Customers expect personalized contact center experiences. They want easy access to customer support and quick resolution of their issues. Delighting callers with a quick and easy interaction remains central to the customer experience (CX) strategy for support organizations. Enterprises often deploy omni-channel contact centers so that they can provide simple mechanisms for their customers to […]
Simplify and automate anomaly detection in streaming data with Amazon Lookout for Metrics
Do you want to monitor your business metrics and detect anomalies in your existing streaming data pipelines? Amazon Lookout for Metrics is a service that uses machine learning (ML) to detect anomalies in your time series data. The service goes beyond simple anomaly detection. It allows developers to set up autonomous monitoring for important metrics […]
Analyze customer churn probability using call transcription and customer profiles with Amazon SageMaker
Regardless of the industry or product, customers are the most important component in a business’s success and growth. Businesses go to great lengths to acquire and more importantly retain their existing customers. Customer satisfaction links directly to revenue growth, business credibility, and reputation. These are all key factors in a sustainable and long-term business growth […]
Get started with the Amazon Kendra Amazon WorkDocs connector
Amazon Kendra is an intelligent search service powered by machine learning (ML). Amazon Kendra reimagines enterprise search for your websites and applications so your employees and customers can easily find the content they’re looking for, even when it’s scattered across multiple locations and content repositories within your organization. With Amazon Kendra, you can search through […]
Orchestrate XGBoost ML Pipelines with Amazon Managed Workflows for Apache Airflow
July 2023: This post was reviewed for accuracy. The ability to scale machine learning operations (MLOps) at an enterprise is quickly becoming a competitive advantage in the modern economy. When firms started dabbling in ML, only the highest priority use cases were the focus. Businesses are now demanding more from ML practitioners: more intelligent features, […]
Announcing specialized support for extracting data from invoices and receipts using Amazon Textract
Receipts and invoices are documents that are critical to small and medium businesses (SMBs), startups, and enterprises for managing their accounts payable processes. These types of documents are difficult to process at scale because they follow no set design rules, yet any individual customer encounters thousands of distinct types of these documents. In this post, […]
Detect small shapes and objects within your images using Amazon Rekognition Custom Labels
There are multiple scenarios in which you may want to use computer vision to detect small objects or symbols within a given image. Whether it’s detecting company logos on grocery store shelves to manage inventory, detecting informative symbols on documents, or evaluating survey or quiz documents that contain checkmarks or shaded circles, the size ratio […]
Bring your own container to project model accuracy drift with Amazon SageMaker Model Monitor
The world we live in is constantly changing, and so is the data that is collected to build models. One of the problems that is often seen in production environments is that the deployed model doesn’t behave the same way as it did during the training phase. This concept is generally called data drift or […]