AWS Big Data Blog
Category: AWS Glue
Optimizing Spark applications with workload partitioning in AWS Glue
AWS Glue provides a serverless environment to prepare (extract and transform) and load large amounts of datasets from a variety of sources for analytics and data processing with Apache Spark ETL jobs. This posts discusses a new AWS Glue Spark runtime optimization that helps developers of Apache Spark applications and ETL jobs, big data architects, […]
Data preprocessing for machine learning on Amazon EMR made easy with AWS Glue DataBrew
The machine learning (ML) lifecycle consists of several key phases: data collection, data preparation, feature engineering, model training, model evaluation, and model deployment. The data preparation and feature engineering phases ensure an ML model is given high-quality data that is relevant to the model’s purpose. Because most raw datasets require multiple cleaning steps (such as […]
Managing COVID-19 exposure with crowd tracing
This is a guest blog post by AWS partner Aspire Ventures As we enter winter, with fewer options to be outdoors, our personal choices can impact our risk of contracting the COVID-19 virus even more. The New England Journal of Medicine publication showed real-world examples of the effectiveness of masks and social distancing in mitigating […]
Building Python modules from a wheel for Spark ETL workloads using AWS Glue 2.0
AWS Glue is a fully managed extract, transform, and load (ETL) service that makes it easy to prepare and load your data for analytics. AWS Glue 2.0 features an upgraded infrastructure for running Apache Spark ETL jobs in AWS Glue with reduced startup times. With reduced startup delay time and lower minimum billing duration, overall […]
Creating a source to Lakehouse data replication pipe using Apache Hudi, AWS Glue, AWS DMS, and Amazon Redshift
February 2021 update – Please refer to the post Writing to Apache Hudi tables using AWS Glue Custom Connector to learn about an easier mechanism to write to Hudi tables using AWS Glue Custom Connector. In this post, we include the modified Apache Hudi JARs as an external dependency. The AWS Glue Custom Connector feature […]
Handling data erasure requests in your data lake with Amazon S3 Find and Forget
February 2024: This post was reviewed and updated for accuracy. Data lakes are a popular choice for organizations to store data around their business activities. Best practice design of data lakes impose that data is immutable once stored, but new regulations such as the European General Data Protection Regulation (GDPR), California Consumer Privacy Act (CCPA), […]
AWS serverless data analytics pipeline reference architecture
May 2022: This post was reviewed and updated to include additional resources for predictive analysis section. Onboarding new data or building new analytics pipelines in traditional analytics architectures typically requires extensive coordination across business, data engineering, and data science and analytics teams to first negotiate requirements, schema, infrastructure capacity needs, and workload management. For a […]
Big data processing in a data warehouse environment using AWS Glue 2.0 and PySpark
The AWS Marketing Data Science and Engineering team enables AWS Marketing to measure the effectiveness and impact of various marketing initiatives and campaigns. This is done through a data platform and infrastructure strategy that consists of maintaining data warehouse, data lake, and data transformation (ETL) pipelines, and designing software tools and services to run related […]
Crafting serverless streaming ETL jobs with AWS Glue
Organizations across verticals have been building streaming-based extract, transform, and load (ETL) applications to more efficiently extract meaningful insights from their datasets. Although streaming ingest and stream processing frameworks have evolved over the past few years, there is now a surge in demand for building streaming pipelines that are completely serverless. Since 2017, AWS Glue […]
Event-driven refresh of SPICE datasets in Amazon QuickSight
Businesses are increasingly harnessing data to improve their business outcomes. To enable this transformation to a data-driven business, customers are bringing together data from structured and unstructured sources into a data lake. Then they use business intelligence (BI) tools, such as Amazon QuickSight, to unlock insights from this data. To provide fast access to datasets, […]