AWS Big Data Blog
Category: Learning Levels
Architectural Patterns for real-time analytics using Amazon Kinesis Data Streams, Part 2: AI Applications
Welcome back to our exciting exploration of architectural patterns for real-time analytics with Amazon Kinesis Data Streams! In this fast-paced world, Kinesis Data Streams stands out as a versatile and robust solution to tackle a wide range of use cases with real-time data, from dashboarding to powering artificial intelligence (AI) applications. In this series, we […]
Build Spark Structured Streaming applications with the open source connector for Amazon Kinesis Data Streams
Apache Spark is a powerful big data engine used for large-scale data analytics. Its in-memory computing makes it great for iterative algorithms and interactive queries. You can use Apache Spark to process streaming data from a variety of streaming sources, including Amazon Kinesis Data Streams for use cases like clickstream analysis, fraud detection, and more. Kinesis Data Streams is a serverless streaming data service that makes it straightforward to capture, process, and store data streams at any scale.
With the new open source Amazon Kinesis Data Streams Connector for Spark Structured Streaming, you can use the newer Spark Data Sources API. It also supports enhanced fan-out for dedicated read throughput and faster stream processing. In this post, we deep dive into the internal details of the connector and show you how to use it to consume and produce records from and to Kinesis Data Streams using Amazon EMR.
Get started with AWS Glue Data Quality dynamic rules for ETL pipelines
In this post, we show how to create an AWS Glue job that measures and monitors the data quality of a data pipeline using dynamic rules. We also show how to take action based on the data quality results.
Entity resolution and fuzzy matches in AWS Glue using the Zingg open source library
In this post, we explore how to use Zingg’s entity resolution capabilities within an AWS Glue notebook, which you can later run as an extract, transform, and load (ETL) job. By integrating Zingg in your notebooks or ETL jobs, you can effectively address data governance challenges and provide consistent and accurate data across your organization.
Achieve peak performance and boost scalability using multiple Amazon Redshift serverless workgroups and Network Load Balancer
As data analytics use cases grow, factors of scalability and concurrency become crucial for businesses. Your analytic solution architecture should be able to handle large data volumes at high concurrency and without compromising speed, thereby delivering a scalable high-performance analytics environment. Amazon Redshift Serverless provides a fully managed, petabyte-scale, auto scaling cloud data warehouse to […]
Governing data in relational databases using Amazon DataZone
Data governance is a key enabler for teams adopting a data-driven culture and operational model to drive innovation with data. Amazon DataZone is a fully managed data management service that makes it faster and easier for customers to catalog, discover, share, and govern data stored across Amazon Web Services (AWS), on premises, and on third-party […]
Revolutionizing data querying: Amazon Redshift and Visual Studio Code integration
In today’s data-driven landscape, the efficiency and accessibility of querying tools play a crucial role in driving businesses forward. Amazon Redshift recently announced integration with Visual Studio Code (), an action that transforms the way data practitioners engage with Amazon Redshift and reshapes your interactions and practices in data management. This innovation not only unlocks […]
Analyze more demanding as well as larger time series workloads with Amazon OpenSearch Serverless
In today’s data-driven landscape, managing and analyzing vast amounts of data, especially logs, is crucial for organizations to derive insights and make informed decisions. However, handling this data efficiently presents a significant challenge, prompting organizations to seek scalable solutions without the complexity of infrastructure management. Amazon OpenSearch Serverless lets you run OpenSearch in the AWS […]
Detect and handle data skew on AWS Glue
October 2024: This post was reviewed and updated for accuracy. AWS Glue is a fully managed, serverless data integration service provided by Amazon Web Services (AWS) that uses Apache Spark as one of its backend processing engines (as of this writing, you can use Python Shell or Spark). Data skew occurs when the data being […]
Dive deep into security management: The Data on EKS Platform
The construction of big data applications based on open source software has become increasingly uncomplicated since the advent of projects like Data on EKS, an open source project from AWS to provide blueprints for building data and machine learning (ML) applications on Amazon Elastic Kubernetes Service (Amazon EKS). In the realm of big data, securing […]