AWS Big Data Blog

Tag: AWS Lambda

Our data lake story: How built a serverless data lake on AWS

In this post, we talk about designing a cloud-native data warehouse as a replacement for our legacy data warehouse built on a relational database. At the beginning of the design process, the simplest solution appeared to be a straightforward lift-and-shift migration from one relational database to another. However, we decided to step back and focus […]

Read More

Preprocessing Data in Amazon Kinesis Analytics with AWS Lambda

Kinesis Analytics now gives you the option to preprocess your data with AWS Lambda. This gives you a great deal of flexibility in defining what data gets analyzed by your Kinesis Analytics application. In this post, I discuss some common use cases for preprocessing, and walk you through an example to help highlight its applicability.

Read More

Build a Serverless Architecture to Analyze Amazon CloudFront Access Logs Using AWS Lambda, Amazon Athena, and Amazon Kinesis Analytics

Nowadays, it’s common for a web server to be fronted by a global content delivery service, like Amazon CloudFront. This type of front end accelerates delivery of websites, APIs, media content, and other web assets to provide a better experience to users across the globe. The insights gained by analysis of Amazon CloudFront access logs […]

Read More

Build a Healthcare Data Warehouse Using Amazon EMR, Amazon Redshift, AWS Lambda, and OMOP

In the healthcare field, data comes in all shapes and sizes. Despite efforts to standardize terminology, some concepts (e.g., blood glucose) are still often depicted in different ways. This post demonstrates how to convert an openly available dataset called MIMIC-III, which consists of de-identified medical data for about 40,000 patients, into an open source data […]

Read More

Data Lake Ingestion: Automatically Partition Hive External Tables with AWS

In this post, I introduce a simple data ingestion and preparation framework based on AWS Lambda, Amazon DynamoDB, and Apache Hive on EMR for data from different sources landing in S3. This solution lets Hive pick up new partitions as data is loaded into S3 because Hive by itself cannot detect new partitions as data lands.

Read More

Simplify Management of Amazon Redshift Snapshots using AWS Lambda

Ian Meyers is a Solutions Architecture Senior Manager with AWS Amazon Redshift is a fast, fully managed, petabyte-scale data warehouse that makes it simple and cost-effective to analyze all your data using your existing business intelligence tools. A cluster is automatically backed up to Amazon S3 by default, and three automatic snapshots of the cluster […]

Read More