Amazon Web Services ブログ

Category: General

新機能 – EC2インスタンスの休止

ご存知のようにAWSでは、必要なタイミングで必要なだけのEC2インスタンスを起動し、スケール自在なシステムを容易に構築することができます。このときインスタンス自体は数秒で起動するものの、OSとその上で稼働するアプリケーションの起動には一定の時間が掛かります。またキャッシュアプリケーションなど、大量のメモリを用いるアプリケーションを起動し、必要なデータをメモリに展開するのにも時間が必要であり、時には10分以上要することがあります。こういった背景があることから、キャパシティを迅速に増加させられるようにインスタンスを前もって起動しておく方法が採られますが、この場合つい起動し過ぎてしまうということがあります。 EC2インスタンスの休止(ハイバネーション) 本日私たちは、起動したEC2インスタンスを希望したようにセットアップしたのちに、そのEC2インスタンスを休止させ、また再開できる機能を発表します。休止プロセスはそのインスタンスのメモリ状態を保管し、また休止したタイミングで設定されていたプライベートIPアドレスとEIPを保持します。

Read More

Amazon FreeRTOSでBluetooth Low Energyが利用可能、Espressif ESP32で利用する例

Amazon Web Services (AWS) は、Amazon FreeRTOS BLEのベータ版を発表しました。本機能により組み込み開発者が、Bluetooth Low Energy (BLE) を使用するAmazon FreeRTOSデバイスをAndroidまたはiOS端末を通して安全にAWS IoTと接続することができます。Amazon FreeRTOSのBLEサポートにより、Wi-Fiを含む他の接続方法よりも低消費電力が必要なデバイス向けの新しいアプリケーション開発が可能になります。 Amazon FreeRTOSのBLEサポートにより、汎用的なAPI経由で標準のGeneric Access Profile (GAP)やGeneric Attributes (GATT)プロファイルを利用することで、Amazon FreeRTOS対応デバイス間で移植可能なBLEアプリケーションの作成や、AndroidやiOS SDKsを利用してAWS IoT機能と統合することが可能です。BLEの仕様によると、GAPはBLEデバイスがどのようにブロードキャストを有効にし、相互接続するかを定義している。GATTは、コネクションが接続されるとどのようにデータが転送されるかを記述している。

Read More

新発表 – Amazon Forecast – 時系列予測を容易に

未来を予見する能力は、信じられないほどのスーパーパワーとなります。AWSは、あなたにその力を与えることはできませんが、機械学習において、数ステップで時系列の予測を行うお手伝いができます。 時系列予測のゴールは、毎週の売上、1日の在庫レベル、1時間ごとのウェブサイトトラフィックなどの時間依存データの将来の値を予測することです。 今日の企業は、シンプルなスプレッドシートから複雑な財務計画ソフトウェアまであらゆるものを使用して、製品需要、リソースニーズ、財務パフォーマンスなどの将来のビジネス成果を正確に予測しようとしています。 これらのツールは、時系列データと呼ばれる一連の履歴データを見て予測を作成します。例えば、そのようなツールは、レインコートの将来の売上を、過去の売上データと、未来が過去によって決定されるという前提をもとにして、単に予測しようとする場合があります。 このアプローチは、不規則な傾向を持つ大量のデータセットに対して正確な予測を生成するのに苦労する可能性があります。 また、時間とともに変化するデータ系列(価格、割引、ウェブトラフィックなど)を、製品の機能や店舗の場所などの関連する独立変数と簡単に組み合わせることもできません。

Read More

re:Invent 2018 / Andy Jassy Keynote / AWS Outposts

AWS Outposts がアナウンスされました。 AWS Outposts AWS Outpostsは、ネイティブのAWSサービス、インフラストラクチャ、および運用モデルをほぼすべてのデータセンター、コロケーションスペース、またはオンプレミス施設に提供します。シームレスなハイブリッドクラウドソリューションのためにAWSで使用するのと同じソフトウェア、サービス、インフラストラクチャ、管理ツール、開発、および展開モデルをOutpostsに使用します。 AWS Outpostには次の2種類があります。1)AWS Outposts上で実行されるAWSサービス上のVMware Cloud。2)AWSクラウドで使用されているのと同じネイティブのAWS APIを使用して、顧客がオンプレミスでコンピューティングとストレージを実行できるようにするAWS Outposts。Outpostsを使用すると、オンプレミス環境とクラウド環境の両方の管理プレーンとして、AWS上のAWS Management ConsoleまたはVMware Cloudを選択できます。オンプレミスまたはクラウドに展開できる最新のクラウドネイティブアプリケーションを構築および展開するために、同じオートメーション、ガバナンスコントロール、ポリシー、API、および開発者ツールを使用できます。 AWS Outpostsを使用すると、AWSクラウドとオンプレミスのすべてのアプリケーションで、API、管理コンソール、自動化、ガバナンスポリシー、およびセキュリティコントロールの管理プレーンとして、AWS上のAWS Management ConsoleまたはVMware Cloudを選択できます。   – プロダクトマーケティング エバンジェリスト 亀田

Read More

re:Invent 2018 / Andy Jassy Keynote / Amazon Textract

Amazon Textractがアナウンスされました。 Amazon Textract スキャンされたドキュメントからテキストとデータを自動的に抽出するサービスです。Amazon Textractは、単純な光学式文字認識(OCR)を超えて、テーブルに格納されたフォームや情報のフィールドの内容も識別するサービスです。 機械学習を使用して、手作業やカスタムコードを必要とせずに、テキストやデータを正確に抽出するためにあらゆる種類の文書を即座に「読む」ことができるようになります。Textractを使用すると、ドキュメントワークフローを迅速に自動化できるため、何百万ものドキュメントページを数時間で処理できます。情報が取り込まれると、ビジネスアプリケーション内で情報を処理して、ローン申請または医療請求処理の次のステップを開始できます。さらに、スマート検索インデックスの作成、承認済みワークフローの自動作成、文書のアーカイブルールへの準拠を維持するために、修正が必要なデータにフラグを立てることができます。 ユースケース スマート検索インデックスの作成 Amazon Elasticsearch Serviceを使用して、構造化されたデータをドキュメントから抽出し、スマートなインデックスを作成し、数百万件の財務諸表をすばやく検索できるようにします。たとえば、住宅ローン会社はAmazon Textractを使用して数百万のスキャンローンアプリケーションを数時間で処理し、抽出されたデータをAmazon Elasticsearchで索引付けすることができます。これにより、「申請者名がJohn Doeのローン申請の検索」や「金利が2%の検索契約」などの検索エクスペリエンスを作成できます。 自動化されたドキュメント処理ワークフローの構築 Amazon Textractは、人間の介入なしにフォームを自動的に処理するために必要な入力を提供できます。たとえば、銀行は融資申し込みのPDFを読むためのコードを書くことができます。文書に記載されている情報は、顧客が手作業によるレビューと検証のために数日待つ必要はなく、アプリケーションの即時結果を得るために、ローンを承認するために必要なバックグラウンドとクレジットチェックを開始するために使用できます。   – プロダクトマーケティング エバンジェリスト 亀田  

Read More

新発表 – AWS マーケットプレイスで機械学習アルゴリズムとモデルのパッケージを提供開始

AWS における私達のミッションは、全ての開発者の手に機械学習を届けることです。それ故、2017 年に私達は、機械学習モデルを構築・トレーニング/チューニング・デプロイするためのフルマネージドなサービスである Amazon SageMaker をローンチしました。サービスローンチ以来、Amazon SageMaker はこれまでにリリースしたサービスの中で最も成長しているサービスの 1 つになり、グローバルで数千の機関で採用されました。Amazon SageMaker を利用するお客様は、Amazon SageMaker で最適化されたアルゴリズムを使い、フルマネージドな MXNet、Tensorflow、PyTorch、Chainer のアルゴリズムを実行させたり、独自のアルゴリズムやモデルを持ち込むことができます。ただ、独自のモデルを自分たちで構築するとなると、多くのお客様はすでに解決されている問題に対するソリューションであるアルゴリズムとモデルを開発するのに非常に多くの時間を費やしてきました。   AWS マーケットプレイス機械学習カテゴリの紹介 AWS マーケットプレイスで提供される新しい機械学習カテゴリについて発表できることを嬉しく思います。機械学習カテゴリには、150以上のアルゴリズムとモデルパッケージがあり、毎日増えて行く予定です。AWS マーケットプレイスは小売(35)、メディア(19)、製造(17)、ヘルスケア・ライフサイエンス(15)、等のような垂直型産業向けに適したセレクションを提供します。 ※()内は提供製品数 お客様は乳がん予測、リンパ腫分類・再入院判定・ローンリスク予測・乗り物認識・小売最適化・ボットネット攻撃検出・カーテレマティクスモデル・動作検出・需要予測・発話認識などのような重要なユースケースに対するソリューションを探すことができます。 お客様は AWS マーケットプレイスでパッケージ化されたアルゴリズムとモデルを探し、閲覧することができます。購入したお客様はすぐに、SageMaker コンソール、Jupyter ノートブック、SageMaker SDK、AWS CLI から直接アルゴリズムやモデルをデプロイすることができます。AmazonSageMaker は静的スキャン、ネットワークの分離、ランタイム監視など、多くのセキュリティ対策を講じることにより、買い手のデータを守ります。 AWS マーケットプレイスにおける売り手の知的財産は、転送中やその後の行程でアルゴリズムとモデルパッケージを暗号化すること、通信に SSL 通信を利用すること、そして、デプロイされたアーティファクトにロールベースでアクセスすることを保証することによって守られます。AWS は、アルゴリズムとモデルを発行するための衝突のないセルフサービスプロセスにより、売り手がビジネスでマネタイズするための安全な方法を提供します。 機械学習カテゴリを利用する 過去に自分自身でモデルを構築しようとしてきたので、私はこの機能に大変興奮しています。AWS マーケットプレイスから提供可能なアルゴリズムやモデルを閲覧した後、Deep Vision AI 社が発行する Deep Vision 乗り物認識を利用することに決めました。このモデルを利用すると、アップロードされた画像群から車のメーカー・モデル、そして、種別を認識することができます。このモデルは保険金請求手続き、オンライン車販売、乗り物識別などのビジネスで利用することができます。 購入手続きを続け、デフォルトの推奨されるインスタンスタイプとリージョンを設定しました。購入引受契約を読み、了承し、モデルを利用する準備が完了しました。 購入したものは Amazon SageMaker コンソールにリストアップされ、利用可能な状態です。Amazon SageMaker で利用するためのモデルデプロイは他のモデルパッケージと同様です。このガイドに沿って、エンドポイントの作成とデプロイを実施するためのステップを完了しました。 デプロイしたエンドポイントを利用して、モデルでの推論を開始できます。このケースでは、車 […]

Read More

re:Invent 2018 / Andy Jassy Keynote / AWS Inferentia

みなさん、こんにちは。アマゾン ウェブ サービス ジャパン、プロダクトマーケティング エバンジェリストの亀田です。 AWS Inferentia がアナウンスされました。 AWS Inferentia     低コストで高性能を実現するように設計された機械学習の推論チップです。AWS Inferentは、TensorFlow、Apache MXNet、PyTorchディープラーニングフレームワーク、およびONNXフォーマットを使用するモデルをサポートし、アプリケーションの計算コストの90%を節約することができます。 AWS Inferentiaは、非常に低コストで高スループット、低遅延の推論性能を提供します。各チップは、複雑なモデルによる高速予測を可能にするために、数百のTOPS(1秒間のテラ操作)の推論スループットを提供します。パフォーマンスをさらに向上させるために、複数のAWS Inferentiaチップを一緒に使用して、何千ものスループットを向上させることができます。Amazon SageMaker、Amazon EC2、Amazon Elastic InferenceでAWS Inferentiaを使用できます。 2019年のサービス提供開始を予定しています。続報をお待ちください。 – プロダクトマーケティング エバンジェリスト 亀田

Read More

re:Invent 2018 / Andy Jassy Keynote / Amazon Managed Blockchain

Amazon Managed Blockchainが発表されました。 Amazon Managed Blockchain オープンソースフレームワークHyperledger FabricとEthereum *を使用してスケーラブルなブロックチェーンネットワークを簡単に作成および管理できる、完全に管理されたサービスです。 ブロックチェーンを使用すると、複数の当事者が信頼できる中央権限を必要とせずにトランザクションを実行できるアプリケーションを構築することができます。しかし、既存のテクノロジーを使用してスケーラブルなブロックチェーンネットワークを構築することは、セットアップして管理するのが複雑です。ブロックチェーンネットワークを作成するには、各ネットワークメンバーが手動でハードウェアをプロビジョニングし、ソフトウェアをインストールし、アクセス制御用の証明書を作成および管理し、ネットワークコンポーネントを設定する必要があります。ブロックチェーンネットワークが稼働したら、インフラストラクチャを継続的に監視し、トランザクション要求の増加やネットワークへの参加または離脱の新しいメンバーなどの変更に適応する必要があります。 Amazon Managed Blockchainは、わずか数回のクリックでスケーラブルなブロックチェーンネットワークをセットアップおよび管理できる、完全に管理されたサービスです。ネットワークを構築するために必要なオーバーヘッドを排除し、数百万のトランザクションを実行する数千のアプリケーションの要求に合わせて自動的に拡張します。ネットワークが起動して実行されると、管理されたブロックチェーンにより、ブロックチェーンネットワークの管理と保守が容易になります。証明書を管理し、新しいメンバーをネットワークに簡単に招待し、計算、メモリ、ストレージリソースなどの運用メトリクスを追跡することができます。さらに、Managed Blockchainは、完全に管理されている元帳データベースであるAmazon Quantum Ledger Database(QLDB)にブロックチェーンネットワークアクティビティの不変なコピーを複製することができます – プロダクトマーケティング エバンジェリスト 亀田

Read More

re:Invent 2018 / Andy Jassy Keynote / Amazon Quantum Ledger Database(QLDB)

Amazon Quantum Ledger Databae (QLDB)がアナウンスされました。 Amazon Quantum Ledger Database (QLDB) 完全に管理された元帳データベースとなり、中央の信頼された機関が有する透過的、不変、および暗号で検証可能なトランザクションログを提供します。Amazon QLDBは​​、すべてのアプリケーションデータの変更を追跡し、時間の経過とともに完全かつ検証可能な変更の履歴を保持します。 一般的には、組織内の経済活動および財務活動の履歴を記録するために使用され、多くの組織では、銀行取引におけるクレジットや借方の履歴の追跡、保険金請求のデータ系列の検証、または保険会社の動きの追跡など、アプリケーションのデータの正確な履歴を維持するために、Ledgerのような機能を備えたアプリケーションを構築することになります。 Amazon QLDBは​​、独自の元帳のようなアプリケーションを構築する複雑な開発作業に携わる必要性を排除する新しいクラスのデータベースです。QLDBを使用すると、データの変更履歴が変更されたり変更されたりすることがなくなります。 Amazon QLDBでは、プロビジョニングの容量や読み書き制限の設定の心配が不要なサーバレスで提供れ、元帳を作成し、テーブルを定義すると、アプリケーションの要求をサポートするためにQLDBが自動的に拡大/縮小されます。   – プロダクトマーケテイング エバンジェリスト 亀田

Read More

re:Invent 2018 / Andy Jassy Keynote / Amazon Timestream

みなさん、こんにちは。アマゾン ウェブ サービス ジャパン、プロダクトマーケティング エバンジェリストの亀田です。 Amazon Timestreamがアナウンスされました。 Amazon Timestream Amazon Timestreamは、IoTおよび運用アプリケーション用の、スケーラブルでスケーラブルで完全に管理された時系列データベースサービスで、リレーショナルデータベースの1/10のコストで、1日あたり何兆ものイベントを簡単に保存および分析できます。 IoTデバイス、ITシステム、およびスマートな産業機械の登場により、時系列データ(時間の経過と共に物事がどのように変化するかを測定するデータ)は、最も急速に成長するデータタイプの1つとなりまし。時系列データは、典型的には時間順の形式で到着し、データは追加専用であり、問​​合せは常にある時間間隔に渡るなどの特定の特性を有します。リレーショナル・データベースはこのデータを格納することができますが、時間間隔でデータを格納および検索するなどの最適化がないため、このデータの処理では非効率です。Amazon Timestreamは、このデータを時間間隔で効率的に保存および処理する目的で構築された時系列データベースです。 毎秒数百万回の挿入でデータを収集し、そのデータをリアルタイムで分析してアプリケーションのパフォーマンスと可用性を向上させることができます。   – プロダクトマーケティング エバンジェリスト 亀田

Read More