Amazon Web Services ブログ

AWS、Apache MXNet の ディープラーニングエンジンのマイルストーンである 1.0 のリリースに対し新しいモデル提供機能の追加を含む貢献

AWS は Apache MXNet ディープラーニングエンジンのマイルストーンとなる 1.0 のリリースへの貢献と、MXNet 向けの新しいモデル提供機能の導入を発表しました。これらの新機能により、(1) ディープラーニングモデルのトレーニングとデプロイが簡素化され、(2) 最先端のパフォーマンス強化の実装が可能になり、また (3) ディープラーニングフレームワーク間の相互運用性が簡単になります。 このブログ記事では、本日導入された主な機能それぞれの開始方法を説明します。 シンプルで使用が容易 Apache MXNet 向けモデルサーバー: モデルサーバーは、わずか数行のコードを使用するだけで、ディープラーニングモデルを数秒でパッケージ化、実行、提供します。これにより API エンドポイント経由でインターネットを使用してアクセスすることができます。その後、アプリケーションからこのエンドポイントを呼び出して予測を行うことができます。また、モデルサーバーには 10 個の事前トレーニング済みモデルを備えた model zoo が含まれています。モデルを自分でトレーニングする必要はなく、簡単にデプロイできます。モデルサーバーによって、ウェブ、モバイル、IoT アプリケーション内への AI 機能のデプロイが簡素化されます。 Apache MXNet 向けモデルサーバーの使用を開始するには、以下のコマンドを使用してライブラリをインストールします。 pip install mxnet-model-server モデルサーバーのライブラリには、SqueezeNet v1.1 オブジェクト分類モデルが含まれています。次のコマンドを使用して SqueezeNet モデルの提供を開始できます。 mxnet-model-server –models squeezenet=https://s3.amazonaws.com/model-server/models/squeezenet_v1.1/squeezenet_v1.1.model モデルサーバーの詳細とソースコード、リファレンスサンプル、チュートリアルの表示方法については、こちらを参照してください。 アドバンスドインデックス作成: 1.0 リリースには、アドバンスドインデックス作成機能が含まれています。これにより、Python NumPy ライブラリ内の ndarray 配列オブジェクトクラスの既存の知識を活用して、より直感的な方法でテンソル演算を実行できます。この機能によりより効率的な方法でインデックスにアクセスできるため、開発者の時間と手間を節約できます。以下は、MXNet の新しいアドバンスドインデックス作成機能の例です。 整数のリストをインデックスとしてサポート: x = nd.array([[1, 2], […]

Read More

AWS が Apache MXNet のマイルストーン 1.0 リリースに貢献、モデル提供機能を追加

Dr. Matt Wood による投稿 AWS は MXNet 向けの新しいモデル提供機能の導入を含む、Apache MXNet ディープラーニングエンジンのマイルストーンとなる 1.0 のリリースへの協力について発表しました。MXNet の新機能は、ユーザーにとって次のような利点があります。 1) MXNet は使用が簡単: MXNet 向けモデルサーバーは AWS が導入した新機能であり、わずか数行のコードを使用するだけで、ディープラーニングモデルを数秒でパッケージ化、実行、提供します。これにより API エンドポイント経由でインターネットを使用してアクセスすることができるため、アプリケーションに簡単に統合することができます。また、1.0 リリースには、詳細なインデックス作成機能が含まれています。これにより、ユーザーはより直観的な方法でマトリックス操作を実行できます。 Model Serving により予測のための API エンドポイントのセットアップが可能に: わずか数行のコードで予測機能を実行してアプリケーションに統合するための API エンドポイントの設定タスクを要約し、開発者の時間と労力を減らします。Docker コンテナベースのデプロイモデルを通じて、Python ベースのディープラーニングフレームワークと本稼働システム間の壁を克服します。 MXNet 用の配列オペレーションの用の高度なインデックス作成: 開発者が MXNet で強力な配列オペレーションを利用できるよう、より直感的になりました。NumPy/SciPy 配列の既存の知識を利用して、高度なインデックス作成機能を使用できます。たとえば、MXNet NDArray および Numpy ndarray をインデックスとしてサポートします (例: a[mx.nd.array([1,2], dtype = ‘int32’])。 2) MXNet は高速: 1.0 リリースには、トレーニングと推論のパフォーマンスを最適化する、最新鋭の機能が実装されています。グラデーション圧縮により、ユーザーは集束率または正確さを失うことなく、コンピューティングノード間の通信の帯域幅を減らすことで、最大 5 […]

Read More

AWS DeepLens の拡張機能: 独自のプロジェクトの構築

AWS DeepLens では、ディープラーニング、Internet of Things (IoT) などの新しいテクノロジーを知ることができるだけでなく、現実的な問題を解決する革新的なシステムを構築することができます。このデバイスおよびサービスには、定義済みのプロジェクトセットが付属しており、プロジェクトをすばやく実行することができます。また、開発者が初心者か経験豊富かに関係なく、同様にエキサイティングなプロジェクトを新しく構築 (および共有) できるようにするオープンプラットフォームとして設計されています。 このブログ投稿では、独自のプロジェクトを構築するプロセスについて説明します。以下に一部のステップを紹介します。 ディープラーニングモデルのトレーニング (Amazon SageMaker を使用) AWS DeepLens エッジデバイス上で実行できるように、トレーニング済みのモデルを最適化する モデルをロードし、ビデオストリーム上で推論を実行できるように、AWS Lambda 関数を開発する AWS Greengrass を使用して AWS Lambda 関数を AWS DeepLens にデプロイする コマンドを送信し、推論を出力できるように、エッジ AWS Lambda 関数をクラウドに接続する 完成 ディープラーニングモデルのトレーニング (Amazon SageMaker を使用) Amazon SageMaker は、データサイエンスで手間のかかる作業を排除する新しいサービスです。このサービスには、推奨のエンジンから Alexa や Amazon Go、Amazon Robotics などの機械学習に基づくシステムまで、Amazon.com のビジネスのさまざまな側面で、Amazon データサイエンティストの長年の経験が反映されています。 優れた機械学習モデルを設計、構築する全体のプロセスは非常に興味深いですが、今回のブログ投稿では割愛します。実際、DeepLens デバイスにディープラーニングモデルをデプロイして再接続し、その出力を活用するフローで生産性を高めれば、現実の新しい問題を解決するために新たなモデルの構築にますます多くの時間を費やすことになります。 機械学習の初心者が、データサイエンティストのエキスパートと同じ開始ポイントに立つには、Amazon SageMaker でノートブックインスタンスを作成する際に利用できる Jupyter […]

Read More

Whooshkaa と Amazon Polly: 視覚と聴覚を組み合わせてパブリッシングの世界を広げる

これは、Robert Loewenthal 氏 (Whooshkaa 社 CEO 兼創立者) のゲストブログ投稿です。 Whooshkaa は、オーストラリアを本拠地とするクリエイティブなオーディオオンデマンドのポッドキャストプラットフォームであり、パブリッシャーや広告主によるオーディエンス到達範囲の拡大を支援しています。当社は、常に新しい製品と手法を試しており、これらを組み合わせてお客様のための新しいソリューションを生み出しています。 Amazon Polly のテキスト読み上げ (TTS) 機能が好例です。当社のお客様の中には、すでに Amazon Polly を使用して既存の配信方法を拡張している大手のパブリッシャー、スポーツ団体、オーストラリア最大の通信会社があります。 これらの従来の情報プロバイダーは、今日の購読者が目だけでなく、耳を通した情報の取得に関心がある点に注目しています。Whooshkaa では、Amazon Polly TTS を使用することで、情報プロバイダーが 48 種類の音声と 24 言語で購読者に情報を提供できます。 今年初めに、オーストラリアを代表する全国紙 The Australian に Amazon Polly が導入されました。購読者は、運転やエクササイズなどで手や目を放せないときに Amazon Polly が読み上げる新聞の記事、レシピ、スポーツの試合結果などを聴くことができます。 Whooshkaa では、Amazon Polly を使用することで、特定のパートナーは選択した任意の新聞記事を数秒以内にポッドキャストエピソードに変換できます。当社が提供するツールでは、複数の記事をマージし、音声をカスタマイズしてアクセント、ピッチ、速度、音量を変更することもできます Whooshkaa の配信ネットワークは多様であり、ユーザーは様々な手段から選んでコンテンツを再生できます。代表的な手段はお気に入りのポッドキャストアプリを使うことです。Whooshkaa は Facebook と独自の提携をしているため、ポッドキャストエピソードをネイティブのオーディオプレイヤーで再生できます。当社のカスタマイズ可能なウェブプレイヤーは Twitter でもサポートされています。ただし、任意のウェブサイトに埋め込むことができます。 このテクノロジーが充実すれば、世界の地域と言語を問わず、パブリッシャーは新聞記事を自由に提供できるようになります。新聞記事は、読者の設定とニーズに応じてカスタマイズすることもできます。 当社はまた、オーストラリア最大の通信会社 Telstra およびナショナルラグビーリーグと提携し、接続されたスマートスピーカーを通じてユーザーのお気に入りのチームの試合結果をライブ配信しています。ユーザーがデバイスに尋ねるだけで、最新の結果が即座に読み上げられます。 当社の開発者 Christian Carlsson […]

Read More

AWS と Caltech が新しい研究協力パートナーシップを通じて AI および Machine Learning を促進

自律ロボット工学から最先端のコンピュータビジョンに至るまで、カリフォルニア工科大学 (Caltech) と Amazon とには多くの共通点があります。人口知能 (AI) と Machine Learning (ML) を推し進めることは、産業を破壊するだけでなく、科学研究のあり方自体を根底から変えるという認識などもそうです。これらのテクノロジーは、工業オートメーション、ロボット工学、がん研究、神経科学などの分野を変革する可能性があります。別の重力子の発見をもたらす可能性すらあります。 本日、両組織間での研究パートナーシップが発表され、AI、データサイエンス、および Machine Learning の研究が促進されることになりました。 このパートナーシップ (2 年更新契約) の一環として、Amazon は、大学院の研究奨学金という形での財政支援と、AWS クラウドのクレジットという形でのコンピューティングリソースを提供し、これらの分野での Caltech の教授陣と学生の研究を助成します。研究チームは、AWS クラウド (最新鋭の Nvidia GPU インスタンスを含む) を通じ、Apache MXNet などのオープンソースプロジェクト使用してディープニューラルネットワークをトレーニングし、人工知能の基本的限界を押し上げることに協力します。パートナーシップは、Caltech の計算数理科学 (CMS) 学部と電気工学 (EE) 学部の研究者、および Caltech 全体の AI/ML 応用研究に携わっている研究者を対象とします。後者には、新たに発足した Center for Autonomous Systems Technology (CAST)、最近発表された Chen Institute for Neuroscience、世界的に著名な Jet Propulsion Lab (JPL) などとのコラボレーションも含まれます。Caltech […]

Read More

AWS DeepLens プロジェクトの出力をラップトップでカスタマイズして表示する

AWS DeepLens は、ディープラーニング対応の開発者ツールキットを搭載したビデオカメラです。コンピュータビジョンのハンズオンチュートリアル、事前構築されたモデルを使用して Machine Learning スキルを開発し、拡張することができます。事前構築されたモデルの例としては、TV モニター、人物、ボトルなど室内の様々な物体を認識および検出するための物体検出、さらに歯磨きをする、口紅を塗る、ドラムを打つ、バイオリンを弾く、バスケットボールをするなどの様々な動作を認識するための動作認識が挙げられます。 AWS DeepLens では、デバイスのカメラからのストリームと、IoT コンソールおよびローカルデバイスからのモデルの出力を表示できます。各方法の詳細については、関連ドキュメントを参照してください。このブログでは、AWS DeepLens からのプロジェクト出力をカスタマイズして HTML ページに表示する方法について説明します。 以下のサービスを使用します。 Amazon Cognito: IoT WebSockets を介して HTML ページから AWS DeepLens MQTT メッセージにアクセスできるようにします。 AWS IoT: データのサブスクリプションと発行を処理します。 Amazon S3: 出力表示用の HTML ファイルを保存します。 AWS CLI または AWS マネジメントコンソールを使用して AWS DeepLens のプロジェクト出力をカスタマイズできます。CLI およびコンソールの使用手順について以下に詳しく説明します。 前提条件 手順に従って AWS DeepLens をカスタマイズする前に、以下の準備が必要です。 AWS DeepLens デバイスを所有する デバイスを登録する プロジェクトを作成してデバイスにデプロイする 詳細については、関連ドキュメントを参照してください。AWS […]

Read More

AWS DeepLens を拡張し AWS Lambda で SMS 通知を送信

AWS DeepLens は、ディープラーニング対応の開発者ツールキットを搭載したビデオカメラです。コンピュータビジョンのハンズオンチュートリアル、事前構築されたモデルを使用して Machine Learning スキルを開発し、拡張することができます。 このブログでは、AWS IoT ルールエンジンと Lambda 関数を使用し、クラウド機能で DeepLens のローカルな機能を拡張する方法について説明します。このシンプルな機能は、たとえば DeepLens デバイスでホットドッグを見た後に、あなたの電話番号に SMS 通知を送信することができます。Amazon Elasticsearch Service (タイムラインやフレームで検出されたすべてのオブジェクトや顔を対象にするダッシュボードや検索インターフェイスの構築)、Amazon Kinesis Analytics (店の前を通り過ぎる人数の異常検出モデルの構築)、Amazon Rekognition (有名人の認識や顔検出の API を使用して近辺にいる VIP を識別) や、その他の AWS クラウドサービスでこの機能を拡張するために上級ユーザーが今後この機能を利用していくだろうと我々は予測しています。 次の図はカメラの前のオブジェクトからポケットの中にあるモバイルデバイスまでに渡るシステム内のデータフローを示しています。 Lambda 関数の作成 まず、クラウドで実行が可能で DeepLens デバイスからのホットドッグの確率が高い (>0.5) メッセージをフィルターできる AWS Lambda 関数を作成します。このプロセス中に、AWS Greengrass を使用するデバイスでデプロイした Lambda 関数からメッセージを取得できるように、AWS IoT ルールエンジンでルールを作成します。 AWS Lambda コンソールで [Create Function] にアクセスします。 […]

Read More

AWS サーバーレスアプリケーションのリポジトリの準備を整えてください

サーバーレスアプリケーションは、私が想像していたよりも早く主流になりました。毎日毎秒、数えきれないほどの AWS Lambda 関数が必要に応じて誕生し、重要なビジネス機能を処理して完了しています。ユーザーの皆様からは、このモデルの柔軟性、スケーラビリティ、コスト効率に優れた点において良い評価を頂いています。 当社は、AWS のすべてのお客様がサーバーレスな未来に向かって前進していただきたいと考えています。Lambda の発表後、当社はサーバーレスアプリケーションモデル (SAM) に従って、サーバーレスアプリケーションを AWS にデプロイおよび管理するプロセスをさらに簡略化しました。また、ウェブアプリ、モバイルバックエンド、イメージ認識と処理、リアルタイムのファイル処理、IoT、MapReduce、リアルタイムのストリーム処理、およびチャットボットのイメージモデレーション用に、サーバーレスリファレンスアーキテクチャも公開しました。 今日は、次の一歩についてお話したいと思います。当社は、AWS のお客様によるサーバーレスアプリの発見とデプロイを可能な限り簡単にしたいと考えています。また、Lambda、SAM、サーバーレスアプリのオープンソースコミュニティを強化し、誰もが共有、参加して利点を得られる余地を作りたいと考えています。 AWS サーバーレスアプリケーションのレポジトリ 近日中に公開予定である AWS サーバーレスアプリケーションのレポジトリを少しだけご紹介します。サーバーレスアプリのプロデューサーとコンシューマー向けに設計されたこの AWS コンソールコンポーネントは、公開、検出、およびデプロイをサポートします。 プロデューサー (開発者、ISV、SaaS プロバイダ、AWS パートナー) は、レポジトリへの公開を簡単に行うことができます。アプリは SAM 形式である必要があり、SPDX ライセンス ID が付属し、グローバルな共有 (すべての AWS のお客様) またはプライベートな共有 (個人とチーム用のアクセスコントロール) のオプションがあります。ソースコードとその他のアプリケーションコンポーネントは、GitHub またはその他のソースコードレポジトリに保存し、参照により含めることができます。この場合も共有のコントロールが可能です。 お客様からの提出をお待ちしております。これは、他社 (Datadog、Here、Splunk、SignalFx) が作成中のレポジトリに加わります。 発行者向け 既に SAM を使用してサーバーレスアプリを構築している場合、提出の受け付け準備が間もなく整います。簡単に復習すると、SAM では、API アクションによってトリガーされ、S3 にアップロードされる Amazon API Gateway API、Amazon DynamoDB テーブル、および AWS Lambda […]

Read More

Amazon Kinesis を用いた Databaseの継続的な変更

Emmanuel Espina は、アマゾン ウェブ サービスのソフトウェア開発エンジニアです。 このブログ記事では、Amazon Kinesis を使用して変更をストリーミングすることによって、中央リレーショナルデータベース を他のシステムと統合する方法について説明します。 次の図は、分散システムにおける一般的なアーキテクチャ設計を示しています。これには、「」と呼ばれる中央ストレージと、この中央ストレージを消費するいくつかの派生「衛星」システムが含まれます。 この設計アーキテクチャを使用して、リレーショナルデータベースを中央データストアとして使用し、このシステムのトランザクション機能を利用してデータの整合性を維持することができます。このコンテキストにおける派生システムは、この変化の事実の単一ソースを観察し、それらの変更を変換し、フィルタリングし、最終的にはその内部インデックスを更新する全文検索システムとすることができます。もう 1 つの例は、OLAP クエリに適した列形式ストレージです。一般に、中央リレーショナルシステムの個々の行を変更する際にアクションを取る必要のあるシステムは、派生データストアに適した候補となります。 これらの種類のアーキテクチャの単純な実装では、変更された行を検索するために派生システムが定期的にクエリを発行し、本質的に SELECT ベースのクエリで中央データベースをポーリングします。 このアーキテクチャのより優れた実装となるのが、非同期の更新ストリームを使用するアーキテクチャです。データベースには通常、行のすべての変更が格納されるトランザクションログがあるため、この変更のストリームが外部オブザーバシステムに公開されている場合、これらのシステムにこれらのストリームを添付して行の変更を処理およびフィルタリングできます。ここでは、中央データベースとして MySQL、メッセージバスとして Amazon Kinesis を使用して、このスキーマの基本的な実装をご紹介します。 通常、MYSQL バイナリログは、マスター上のすべての変更を読み取ってローカルに適用する読取りレプリカに公開されます。この記事では、変更をローカルデータベースに適用するのではなく、Amazon Kinesis ストリームに変更を公開する、一般化されたリードレプリカを作成します。 このメソッドの重要な点の 1 つは、コンシューマーが SQL クエリを受け取らないことです。SQL クエリは公開される可能性もありますが、一般的なオブザーバーは、SQL 互換のデータレプリカを維持しない限り、SQL にはあまり関心がありません。代わりに、変更されたエンティティ (行) を 1 つずつ受け取ります。このアプローチの利点は、コンシューマーが SQL を理解する必要はなく、事実の単一ソースは誰が変更を消費するのかを知る必要はないということにあります。これは、さまざまなチームが、必要なデータ形式で調整することなく作業できることを意味します。さらに都合がいいことに、Amazon Kinesis クライアントはが特定の時点から読む機能を備えているため、各コンシューマーは独自のペースでメッセージを処理します。これが、メッセージバスがシステムを統合するための結合されていない方法の 1 つとなる理由です。 この記事で使用されている例では、行フェッチャーは中央データベースに接続する通常の Python プロセスであり、リードレプリカをシミュレートします。 データベースは、Amazon RDS または MySQL の任意のインストールのいずれかになります。RDS の場合、フェッチャープロセスは RDS インスタンスホストにカスタムソフトウェアをインストールすることができないため、別のホスト […]

Read More

Alexa for Business: ワークプレイスでAmazon Alexaデバイスの利用

私の日常生活にはAlexaよりも多くのものが統合されています。私は、Echoデバイスと利用可能なAlexa スキルを家のライトをつけたり、ドアベルを鳴らしてる人を確認するためにEcho Showにビデオをながしたり、1週間単位で多くのTo Doの状態を確認したり、音楽を再生したするなど多くのことを行ってます。私は家族のメンバーに、今では生きていけないと思われないあらゆる種類の活動のために、自分のEchoデバイスでAlexaスキルを有効にすることさえできます。ずっと古い世代にいる母(私が言ったことは内緒にしてください)は、母のEchoデバイスと私がベーキングレシピを保管するために作ったカスタムAlexaスキルを使ってます。彼女は、また、最新の健康や美食情報のスキルを探すことを楽しんでいます。私は仕事に行くときに何かが欠けているように感じてます。例えば、単にカレンダーから次のアポをAlexaに聞くこともできないのです。 Alexaを仕事のためのアシスタントとして利用したい人のために、エキサイティングなニュースがあります。ビジネス及び組織に皆様が知っており、好きなAlexaをスケーラブルな形で職場に持ち込むことができる新しいサービス、Alexa for Businessサービスを発表できることを嬉しく思います。Alexa for Businessサービスは、Alexaを仕事場に持ち込み業務の効率化をはかりたいだけでなく、Echoデバイスやプライベートスキルの有効化及び企業ユーザ管理をするためのツールとリソースを提供いたします。 Alexa for Buisnessで職場をよりスマートに Alexa for Businessは、皆様が知っており、好きなAlexaを仕事場にもちこみ、すべてタイプの人たちの生産性をサポート、共有されたEchoデバイス及び個人保有のEchoデバイスの管理を支援します。仕事場では、共有されたデバイスは、誰もが利用するために共有の場所に設置することができ、ユーザは、職場でも家でもパーソナルデバイス利用することができます。 エンドユーザは、共有のデバイス、または、個人のデバイスを利用することができます。以下がそれぞれのデバイスでできることです。 共有のデバイス 会議室からミーティングに参加:”Alexa、ミーティングを開始して”という言うだけです。Alexaは、ビデオ会議装置の電源をつけ、電話会議用電話番号にダイヤルし、ミーティングに参加できます。 オフィス関連の手助け:カスタムスキルを利用することでオフィス関連の意思決定の手助け、空いている会議室を探す、設備の故障の報告、用品のオーダーができます。 個人のデバイス 電話とメッセージの利用が可能:Alexaは、ハンズフリーで電話をかけることやメッセージ送信ができます 自動的に会議にダイヤルイン:Alexaは、家、職場、または、外出先でも声によりミーティングに参加できます。 インテリジェント アシスタント:Alexaが、クイックにカレンダーをチェックし、ミーティングのスケジュールを助け、To-Doリストを管理し、リマインダーをセットできます。 情報の検索:Alexaは、Salesforce、ConcurやSplunkのような人気のビジネスアプリケーション内の情報を見つけるのに役立ちします 管理者が利用できるコントロールの一部を次に示します: 共有のAlexaデバイスのプロビジョニングと管理:Alexa for Businessコンソールを使用して、職場の共有デバイスをプロビジョニングして管理できます。各デバイスごとに、会議室の指定などの場所を設定したり、デバイスのパブリックスキルとプライベートスキルを割り当てることができます。 会議室の設定を構成する:簡単な「Alexa、会議を開始して」を使用して会議を始めることができます。Alexa for Businessでは、会議室の設定を構成したあと、Alexaを使用して会議を開始し、会議室設備を制御したり、部屋のAmazon Echo デバイスから直接ダイヤルインすることができます。 ユーザー管理:Alexa for Businessアカウントで個人のAlexaアカウントを登録するために、組織内のユーザーを招待することができます。ユーザーが登録されると、カスタム プライベート スキルを有効にして、個人用のAlexaアカウント、職場または自宅のいずれかのデバイスで使用することができます。 スキルの管理:組織が作成したパブリックスキルとカスタムプライベートスキルを共有デバイスに割り当て、登録されたユーザーがプライベートスキルを利用できるようにすることができます。スキルグループを作成して、特定の共有デバイスに割り当てることができます。 プライベートスキルを構築し、Alexa for Business APIsを使用する:Alexa Skill Kit を利用し、自分のスキルを作成します。Alexa Skills Storeに公開することなく、Alexa for Businessアカウントで共有デバイスや登録ユーザーが利用できるようにすることができます。 Alexa for Businessは追加のAPIを提供しています。このAPIを使用してスキルにコンテキストを追加し、管理タスクを自動化できます。 それでは、Alexa […]

Read More